簡易檢索 / 詳目顯示

研究生: 黃健敉
Huang, Jian-Mi
論文名稱: 應用於壓縮機之同步磁阻馬達設計與開發
Design and Development of Synchronous Reluctance Motors for Reciprocating Compressors Application
指導教授: 蔡明祺
Tsai, Mi-Ching
共同指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 85
中文關鍵詞: 同步磁阻馬達壓縮機凸極比有限元素分析
外文關鍵詞: Synchronous Reluctance Motor, Compressors, Saliency Ratio, Finite Element Method
相關次數: 點閱:106下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來政府積極推廣節能減碳的政策,夏季用電大宗為冷氣空調產品,而帶動整個冷媒壓縮循環系統的心臟為馬達。有鑑於此,本研究利用既有的感應馬達定子,進行同步磁阻馬達轉子設計。由於同步磁阻馬達與感應馬達同樣是在定子輸入三相弦波電壓激磁以產生旋轉磁場,在電裝載一樣的情況下,影響輸出性能主要因素在於轉子之凸極比,直軸電感與交軸電感之比值與差值為主要之設計參數。另外壓縮機在運轉時的震噪有很大部分是來自於馬達的轉矩漣波,因此轉矩漣波的抑制也是同步磁阻馬達的設計重點。
    為達到高效率目標,同步磁阻馬達之轉子結構,包括磁障層數、交直軸絕緣比、橋部、肋部和氣隙長度,利用有限元素法分析之軟體Ansys Maxwell,分別進行馬達設計、模擬與分析,並對馬達輸出性能加以探討。最後建立一套完整的設計流程,並以動力計量測實驗驗證模擬分析之正確性。

    The synchronous reluctance motor has attracted interest because of reduce unstable magnet costs and conserve energy. In this thesis, the main factor affecting Ld and Lq is the number of flux barriers, the nonmagnetic rotor insulation width, and the width of the connective ribs. Because the stator used in a SynRM is the same as that used in induction motor, the stator of a 0.75KW three-phase induction motor was used to design the 0.75KW SynRM in this study, a SynRM rotor structure design process method are presented. In addition, the simulations of torque, voltage, current, speed, power factor and efficiency are built by finite element method (FEM). The experiment result of the phototype synchronous reluctance motor is very close to the simulation result at the rated output condition, which efficiency achieves 87.2% rather IE4.
    The purpose of this thesis is to present information for developing a suitable Synchronous Reluctance Motor rotor geometry design procedure. To have the potential position of the SynRM in industry a performance comparison between this machine and the other most used machines such as the Induction Motor will be presented. Special attention will be paid to the possible rotor geometries of SynRM, because as it has been shown by J. K. KOSTKO,this can directly influence our insight on the machine’s potential abilities. The main task will highlight the most important parameters of the machine that affect its performance. This can be suitably achieved by finite element method analysis. The combined theory and finite element procedure which is suggested here should be used to reduce the number of barriers as much as possible and not to find an absolute optimum design for a certain number of barriers. If only the torque maximization is targeted the procedure will work, but if other parameters like torque ripple and iron losses, especially in the rotor, are considered, then a more detailed model for controlling these two target variables is needed.

    中文摘要 I Abstract II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 符號表 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 5 1.3 論文架構 11 第二章 同步磁阻馬達基本原理概述 12 2.1 磁阻原理 12 2.2 交直軸轉換 13 2.3等效電路與向量示意圖 15 2.3.1 轉矩方程式 18 2.3.2 功率因數方程式 20 2.3.3 電感方程式 22 2.4 轉子結構分類 24 2.5 文獻回顧 26 第三章 同步磁阻馬達參數設計 30 3.1 設計流程 30 3.1.1 磁障層數 31 3.1.2 磁障層開口角 33 3.1.3 交軸絕緣比 35 3.1.4 直軸絕緣比 39 3.2 單層磁障設計 41 3.3 SynRM 0.75KW設計 45 第四章 模擬之特性分析 50 4.1 IM 模擬 50 4.2 SynRM TLA 模擬 54 4.3 SynRM ALA 模擬 61 4.4模擬結果比較 68 第五章 實驗結果與模擬比較 69 5.1 實驗架構 69 5.2 模擬與實測比較 71 第六章 結論與未來建議 75 6.1 結論 75 6.2 未來研究建議 76 參考文獻 77

    [1] A. T. de Almeida, F. J. T. E. Ferreira, G. Baoming, "Beyond Induction Motors-Technology Trends to Move Up Efficiency," IEEE transactions on industry applications, vol. 50, no. 3, may 2014.
    [2] 康基宏、鄭永仁、陳慧珠、簡榮茂,“高效率馬達產業動態與發展”,機械工業雜誌,第 35 期,第15-32頁, 2012 。
    [3] 黃得晉、劉文海,“高效率馬達關鍵元件自主化機會探討”,金屬工業發展中心,mirdc-101-S301,2012年5 月。
    [4] C. C. Cheng, D. Lee, "Smart Sensors Enable Smart Air Conditioning Control," department of energy and refrigerating air-conditioning engineering, national taipei university of technology, taipei 10608, taiwan
    [5] A. K. Dutta, T. Yanagisawa and M. Fukuta, “An investigation of the performance of a scroll compressor under liquid refrigerant injection,” international journal of refrigeration, vol. 24, pp. 577-587, 2004.
    [6] S. C. Hu and R. H. Yang, "Development and testing of a multi-type air conditioner without using AC inverters," energy conversion and management, vol.46, pp. 373–383, 2005.
    [7] 楊榮華,“一對多可變容量空調機系統研究”,國立台北科技大學冷凍與低溫科技研究所碩士論文,2002 年。
    [8] H. Nye, “Digital variable multi A/C technology passes test,” air conditioning, heating, & refrigeration news, January 14, 2002.
    [9] 經濟部能源局,“2010 年能源科技研究發展白皮書”,99 年。
    B. K. Bose, “Modern Power Electronics and AC Drives, ” prentice hall, 2002.
    [10] J. Malan, M. J. Kamper and P. N. T. Williams, “Reluctance synchronous machine drive for hybrid electric vehicle, ” in IEEE Conf. Rec. ISIE’98, vol. 2, pp. 367-372, 1998.
    [11] A. J. Geoghan, and J. J. Carroll, “Position tracking control of a synchronous reluctance motor,” in IEEE Conf.Rec. IAS’95, vol. 1, pp. 271-277, 1995.
    [12] B. J. Chalmers, L. Musaba, and D. F. Gosden, “Variable-frequency synchronous motor drives for electric vehicles,” IEEE Trans. Ind. Appl., vol. 32, no. 4, pp. 896-903, July/Aug. 1996.
    [13] J. Haataja, A Comparative Performance Study of Four Pole Induction Motors and Synchronous Reluctance Motors in Variable Speed Drives, Lappeenranta University of Technology, 2003.
    [14] Fitzgerald, Kingsley and S. D. Umans, Electric Machinery, McGraw-Hill Companies, 2013.
    [15] P. L. Alger, “The Nature of Polyphase Induction Machines”, New York: Wiley, 1951.
    [16] T. A. Lipo, T. J. E. Miller, A. Vagati, I. Boldea, L. Malesani, and T. Fukao, “Synchronous reluctance drives” tutorial presented at IEEE-IAS Annual Meeting, Denver, CO, Oct.1994.
    [17] C. Sadarangani, “Electrical machines: Design and Analysis of induction and permanent magnet motors”, division of electrical machines and power electronics, school of electrical engineering, Royal institute of technology (KTH) Stockholm, Sweden, Feb., 2006.
    [18] M.J. Kamper, F.S. Van der Merwe, S. Williamson, “Direct finite element design optimization of the cage less reluctance synchronous machine”, Energy Conversion, IEEE Transactions on, Volume 11, Issue 3, Sept. 1996 Page(s):547 – 555.
    [19] F. Fernandez-Bernal, A. Garcia-Cerrada, R. Faure, “Efficient control of reluctance synchronous machines”, Industrial Electronics Society, 1998. IECON '98. Proceedings of the 24th Annual Conference of the IEEE, Volume 2, 31 Aug.-4 Sept. 1998 Page(s):923 -928 vol.2.
    [20] L. Xu, X. Xu, T.A. Lipo and D. W. Novotny, “Vector control of a synchronous reluctance motor including saturation and iron loss”, IEEE Trans. Industry Applications., vol. 27,no. 5, pp. 977-987, Sept. 1991.
    [21] A. Vagati, “The synchronous reluctance solution: a new alternative in A. C. drives", Proc IEEE IECON'94 (Bolagna), vol. 1, pp.1-13, 1994.
    [22] D. A. Staton, T. J. E. Miller, S. E. Wood, “Maximizing the saliency ratio of the synchronous reluctance motor”, Electric Power Applications Volume 140, Issue 4, July 1993 Page(s):249 – 259.
    [23] T. Matsuo, T. A. Lipo, “Field oriented control of synchronous reluctance machine”, Power Electronics Specialists Conference, 1993. PESC '93 Record, 24th Annual IEEE, 20-24 June 1993 Page(s):425 - 431.
    [24] T. Matsuo, T. A. Lipo, ”Rotor design optimization of synchronous reluctance machine”,Energy Conversion, IEEE Transactions on, vol. 9, no. 2, June 1994.
    [25] M.J. Kamper and A.F. Volschenk, “Effect of rotor dimensions and cross magnetization on Ld and Lq inductances of reluctance synchronous machine with cage less flux barrier rotor”, IEE Proc.-Electr. Power Appl., vol. 141, no. 4, July 1994.
    [26] A. VAGATI, M. PASTORELLI, P. GUGLIELMI, A. CANOVA, “Synchronous reluctance motor based sensorless drive for general purpose application”, Dipartimento di Ingegneria Elettrica Industriale, Politecnico di Torino, Corso Duca degli Abruzzi, 24, I-10129 Torino (Italy).
    [27] F. Magnussen, ‘‘Theoretical analysis and design of motors for variable speed drives’’, ABB Technical Report, SECRC/PT/TR-06/039, 17th February 2006.
    [28] J. K. Kostko, “Polyphase reaction synchronous motors,” Journal- AIEE, vol. 42, pp. 1162- 1168, 1923.
    [29] J. F. H. Douglas, “The theory of anisontropic field structures in synchronous machines,” Trans. AIEE, vol. 75, pp.84-86, 1956.
    [30] A. J. O. Cruickshank, R. W. Menzier and A. F. Anderson, “Axially laminated anisotropic rotors for reluctance motors,” Proc. Lost, Elect, Eng., vol. 113, pp. 2058-2060, Dec. 1966.
    [31] A. El-Antably, T. L. Hudson, “The design and steady-state performance of a high-efficiency reluctance motor,” in IEEE IAS’85, pp. 770-776, 1985.
    [32] A. Vagati and G. Franceschini, I. Maragiu and G. P. Troglia, “ Design criteria of high performance synchronous reluctance motors,” in IEEE IAS’92, vol. 1, pp. 66-73, 1992.
    [33] X. B. Bomela, S. K. Jackson and M. J. Kamper, “Performance of small and medium power flux barrier rotor reluctance synchronous machine drives,” in Int. conf. Electr. Machines, pp. 95-99, 1998.
    [34] M. Sanada, K. Hiramoto, S. Morimoto and Y. Takeda, “Torque ripple improvement for synchronous reluctance motor using asymmetric flux barrier arrangement,” IEEE IAS’03, vol. 1, pp. 250-255, 2003.
    [35] A. Chiba, M. A. Rahman and T. Fukao, “ Radial force in a bearingless reluctance motor,” IEEE Trans. Magnetics, vol. 27, no. 4, pp. 786-790, March 1991.
    [36] D. Platt, “Reluctance motor with strong rotor anisotropy,” IEEE Trans. Ind. Appl., vol. 28, no. 3, pp. 652-659,May/June 1992.
    [37] K. C. Kim, J. S. Ahn, S. H. Won, J, P. Hong and J. Lee “A study on the optimal design of SynRM for the high torque and power factor,” IEEE Trans. Magnetics, vol. 43, no. 6, pp. 2543-2545, June 2007.
    [38] Murakami, Y. Honda, Y. Sadanaga, Y. Ikkai, S. Morimoto and Y. Takeda, “Optimum design of highly efficient magnet assisted reluctance motor,” in IEEE IAS’01, vol. 4, pp. 2296-2301, 2001.
    [39] H. Murakami, Y. Honda, S. Morimoto and Y. Takeda, “A permanent magnet-assisted synchronous reluctance motor,” Electr. Eng. Japan, vol. 142, no. 4, pp. 66-74, 2003.
    [40] J. Haataja and J. Pyrhönen, “Permanent Magnet Assisted Synchronous Reluctance Motor: an Alternative Motor in Variable Speed Drives,” Energy eff. in motor driven Syst., pp 101-110, 2003.
    [41] P. Niazi, H. A. Toliyat, D. H. Cheong and J. C. Kim, “A low-cost and efficient permanent-magnet-assisted synchronous reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 43, no. 2, pp. 542-550, March/April 2007.
    [42] K. Uezato, T. Senjyu and Y. Tomori, “Modeling and vector control of synchronous reluctance motors including stator iron loss,” IEEE Trans. Ind. Appl., vol. 30, no. 4, pp. 971-976, July/Aug. 1994.
    [43] D. A. Staton, T. J. Miller and S. E. Wood, “Unified theory of torque in switched reluctance and synchronous motors,” IEEE Trans. Ind. Appl., vol. 31, no. 2, pp. 329-337, March/April 1995.
    [44] P. Y. P. Wung and H. B. Puttgen, “Synchronous reluctance motor operating point dependent parameter determination,” IEEE Transactions on Industry Applications, vol. 28, no. 2, pp. 358-363, March/April 1992.
    [45] A. Chiba, F. Nakamura, T. Fuko and M. A. Rahman, “Inductances of cageless reluctance-synchronous machines having nonsinusoidal space distributions,” IEEE Trans. Ind. Appl., vol. 27, no. 1, pp. 44-51, Jan. 1991.
    [46] I. Bolde and S. A. Nasar, “Emerging electric machines with axially laminated anisotropic rotors: A review,” Electr. Machines and Power Syst., vol. 19, pp. 673-704, 1991.
    [47] L. Xu and J. Yao, “A compensated vector control scheme of a synchronous reluctance motor including saturation and iron losses,” IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1330-1338, Nov./Dec. 1992.
    [48] T. Matsuo, E. El-Antably and T. A. Lipo, “A new control strategy for optimum-efficiency operation of a synchronous reluctance motor,” IEEE Trans. Ind. Appl., vol. 33, no. 5, pp. 1146-1153, Sept./Oct. 1997.
    [49] J. C. Kim, J. H. Lee and I. S. Jung, “Vector control scheme of synchronous reluctance motor considering iron core loss,” IEEE Trans.Magnetics, vol. 34, no. 5, pp. 3522-3527, Sept. 1998.
    [50] A. Fratta, C. Petrache, G. Franceschini and G. P. Troglia, “A simple current regulator for flux-weakened operation of high performance synchronous reluctance drives,” in IEEE IAS’94, vol. 1,pp. 649-657, 1994.
    [51] T. Matsuo and T. A. Lipo, “Current sensorless field oriented control of synchronous reluctance motor,” in IEEE Conf. Rec. IAS’93, vol. 1, pp. 672-678, 1993.
    [52] T. Matsuo and T. A. Lipo, “Rotor position detection scheme for synchronous reluctance motor based on current measurements,” IEEE Trans. Ind. Appl., vol. 31, no. 4, pp. 860-868, July/Aug. 1995.
    [53] M. T. Lin and T. H. Liu, “Sensorless synchronous reluctance drive with standstill starting,” IEEE Trans. Aerosp. Electron. Syst., vol. 36, no. 4, Oct. 2000.
    [54] M. S. Arefeen, M. Ehsani and T. A. Lipo, “Sensorless position measurement in synchronous reluctance motor,” IEEE Trans. Power Electron., vol. 9, no. 6, Nov. 1994.
    [55] R. Lagerquuist, I. Boldea and T. J. E. Miller, “Sensorless control of the synchronous reluctance motor,” IEEE Trans. Ind. Appl., vol. 30, no. 3, pp. 673-682, May/June 1994.
    [56] M. G. Jovanovic, R. E. Betz and D. Platt, “Sensorless vector controller for a synchronous reluctance motor,” IEEE Trans. Ind. Appl., vol. 34, no. 2, pp. 346-354, March/April 1998.
    [57] L. Kreindler, A. Testa and T. A. Lipo, “ Position sensorless synchronous reluctance motor drive using the stator phase voltage third harmonic,” in IEEE Conf. Rec. IAS’93, vol. 1, pp. 679-686, 1993.
    [58] A. Consoli, F. Russo, G. Scarcella, and A. Testa, “Low- and zero-speed sensorless control of synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 35, no. 5, pp. 1050-1057, Sept./Oct. 1999.
    [59] S. J. Kang, J. M. Kim and S. K. Sul, “Position sensorless control of synchronous reluctance motor using high frequency current injection,” IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1271-1275, Dec. 1999.
    [60] T. H. Liu and M. T. Lin, “A fuzzy sliding-mode controller design for a synchronous reluctance motor drive,” IEEE Trans. Aerosp. Electron. Syst., vol. 32, no. 3, pp. 10650-1076, July 1996.
    [61] M. T. Lin and T. H. Liu, “Robust Position Controller for a Synchronous Reluctance Drive,” in Proc. Nat. Symp. Electric Power Eng., pp. 70-74, 2001.
    [62] K. K. Shyu and C. K. Lai, “Incremental motion control of synchronous reluctance motor via multisegment sliding mode control method,” IEEE Trans. Contr. Syst. Tech., vol. 10, no. 2, pp. 169-176, 2002.
    [63] C. H. Lin, “Adaptive recurrent fuzzy neural network control for synchronous reluctance motor servo drive,” IEEE Proc. Electric. Power Appl., vol. 151, no. 4, pp. 263-272, Nov. 2004.
    [64] X. Longya and W. Baoguo, “Comparison study of rotor structures for five-phase synchronous reluctance machines,” in IEEE IAS’99, vol. 2,pp. 846-853, 1999.
    [65] E. E. Ward and H. Harer, “Preliminary investigation of an inverter fed 5-phase induction motor,” IEE Proc., vol.116, no. 6, pp. 980-984, 1969.
    [66] A. Vagati, M. Pastorelli, G . Franceschini, C. Petrache “Design of low-torque-ripple synchronous reluctance motors”, IEEE Industy Appli-cation Society Annual Meeting New Orleans, Louisiana, October 59, 1997.
    [67] A. Vagati, “Synchronous reluctance electrical motor having a low torque ripple design”,USA patent No. 5,818,140, Oct. 6, 1998.
    [68] N. Bianchi, S. Bolognani, D. Bon, M. Dai Pre´, “Torque Harmonic Compensation in a Synchronous Reluctance Motor”, 37th IEEE Power Electronics Specialists Conference,June 18 - 22, 2006, Jeju, Korea.
    [69] N. Bianchi, S. Bolognani, D. Bon, M. Dai Pre´, “Rotor flux–barrier design for torque ripple reduction in synchronous reluctance motors”, Department of Electrical Engineering, University of Padova, Italy, 2006.
    [70] R. R. Moghaddam, “Synchronous reluctance machine (SynRM) design”, Master Thesis, Department of Electrical Engineering, Electrical Machines and Power electronics, Royal Institute of Technology, Stockholm, 2007.

    下載圖示 校內:2020-08-24公開
    校外:2020-08-24公開
    QR CODE