| 研究生: |
盧提文 Lu, Ti-Wen |
|---|---|
| 論文名稱: |
以多基因體學尺度分析冠狀病毒之基因重組拓樸結構:人類SARS-CoV及-CoV-2和動物SARS相關冠狀病毒 Multi-genomics scale analysis on the topology of viral recombination among coronaviruses: human SARS-CoV, and SARS-CoV-2, and animal SARS-CoV-related coronaviruses |
| 指導教授: |
江孟蓉
Chiang, River |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 拓樸數據分析 、持續同調 、新冠病毒 、序列重組 |
| 外文關鍵詞: | Topological Data Analysis, Persistent Homology, SARS-CoV-2, Gene Recombination |
| 相關次數: | 點閱:154 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論文中,我們將簡介持續同調(persistent homology),一種應用在有限度量空間的同調理論。持續同調能夠作為數據分析方法協助我們判斷數據中被提取的資訊為雜訊或具備代表性。以代數拓樸為基礎,持續同調是拓樸數據分析中常用的工具且尤其適合探討高維度的數據。
為了說明持續同調在應用上的有效性,我們在不同基因體學的層次以該方法分析來自不同動物宿主且與 SARS-CoV-2 和 SARS-CoV 相關的病毒序列之可能重組事件。SARS-CoV-2 自從流行病 COVID-19 爆發以來備受關注。此研究方法受到 Chan, Carlsson 和 Rabadan 三位教授關於病毒演化的研究啟發。藉由辨認持續同調的生成元,我們能夠呈現可能的病毒序列重組事件。
In this thesis, we give a brief review on persistent homology as a homology theory adapted to finite metric spaces. It is therefore well-suited in data analysis to characterize and extract representative information distinguished from noise. Coming from algebraic topology, it is one of the tools in topological data analysis and is especially suitable to study datasets of high dimensions.
To illustrate its effectiveness in applications, we use persistent homology to analyze putative recombination events among a variety of SARS-CoV-2 and SARS-CoV related viruses from different animal hosts and at different genomics levels. SARS-CoV-2 has been of high concern since the outbreak of the pandemic COVID-19. This approach is inspired by the work of Chan, Carlsson, and Rabadan. By identifying generators of the persistent homology, we are able to present possible recombination events.
[1] Yipeng Cao, Rui Yang, Imshik Lee, Wenwen Zhang, Jiana Sun, Wei Wang, and. Xiangfei Meng. Characterization of the sars-cov-2 e protein: Sequence, structure, viroporin, and inhibitors. Protein Science, 30(6):1114–1130, 2021.
[2] Joseph Minhow Chan, Gunnar Carlsson, and Raul Rabadan. Topology of viral. evolution. Proceedings of the National Academy of Sciences, 110(46):18566–18571, 2013.
[3] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological. persis- tence and simplification. In Proceedings 41st annual symposium on foundations of computer science, pages 454–463. IEEE, 2000.
[4] David Eisenbud. Commutative algebra: with a view toward algebraic. geometry, volume 150. Springer Science & Business Media, 2013.
[5] Bernard N FIELDS, David M KNIPE, Robert M CHANOCK, Martin S HIRSCH, Joseph L MELNICK, Thomas P MONATH, and Bernard ROIZMAN. Fields virology. Revista do Instituto de Medicina Tropical de S ̃ao Paulo, 35:72–72, 1993.
[6] Yu-Zhi Fu, Su-Yun Wang, Zhou-Qin Zheng, Yi Huang, Wei-Wei Li, Zhi-Sheng. Xu, and Yan-Yi Wang. Sars-cov-2 membrane glycoprotein m antagonizes the mavs- mediated innate antiviral response. Cellular & Molecular Immunology, 18(3):613– 620, 2021.
[7] James Hadfield, Colin Megill, Sidney M Bell, John Huddleston, Barney Pot- ter, Charlton Callender, Pavel Sagulenko, Trevor Bedford, and Richard A Ne- her. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics, 34(23):4121–4123, 2018.
[8] Eneida L Hatcher, Sergey A Zhdanov, Yiming Bao, Olga Blinkova, Eric P Nawrocki, Yuri Ostapchuck, Alejandro A Scha ̈ffer, and J Rodney Brister. Virus variation resource–improved response to emergent viral outbreaks. Nucleic acids research, 45(D1):D482–D490, 2017.
[9] Ben Hu, Hua Guo, Peng Zhou, and Zheng-Li Shi. Characteristics of sars-cov-2 and covid-19. Nature Reviews Microbiology, 19(3):141–154, 2021.
[10] Dan Hu, Changqiang Zhu, Lele Ai, Ting He, Yi Wang, Fuqiang Ye, Lu Yang, Chenxi Ding, Xuhui Zhu, Ruicheng Lv, et al. Genomic characterization and in- fectivity of a novel sars-like coronavirus in chinese bats. Emerging microbes & infections, 7(1):1–10, 2018.
[11] Tommy Tsan-Yuk Lam, Na Jia, Ya-Wei Zhang, Marcus Ho-Hin Shum, Jia-Fu Jiang, Hua-Chen Zhu, Yi-Gang Tong, Yong-Xia Shi, Xue-Bing Ni, Yun-Shi Liao, et al. Identifying sars-cov-2-related coronaviruses in malayan pangolins. Nature, 583(7815):282–285, 2020.
[12] Arthur M Lesk. Introduction to genomics. Oxford University Press, 2017.
[13] Li-li Li, Jing-lin Wang, Xiao-hua Ma, Xiao-man Sun, Jin-song Li, Xiao-fei Yang, Wei-feng Shi, and Zhao-jun Duan. A novel sars-cov-2 related coronavirus with complex recombination isolated from bats in yunnan province, china. Emerging microbes & infections, 10(1):1683–1690, 2021.
[14] Ping Liu, Jing-Zhe Jiang, Xiu-Feng Wan, Yan Hua, Linmiao Li, Jiabin Zhou, Xi- aohu Wang, Fanghui Hou, Jing Chen, Jiejian Zou, et al. Correction: Are pangolins the intermediate host of the 2019 novel coronavirus (sars-cov-2)? PLoS pathogens, 17(6):e1009664, 2021.
[15] Kavita S Lole, Robert C Bollinger, Ramesh S Paranjape, Deepak Gadkari, Smita S Kulkarni, Nicole G Novak, Roxann Ingersoll, Haynes W Sheppard, and Stuart C Ray. Full-length human immunodeficiency virus type 1 genomes from subtype c-infected seroconverters in india, with evidence of intersubtype recombination. Journal of virology, 73(1):152–160, 1999.
[16] Herv ́e Pages, Patrick Aboyoun, Robert Gentleman, and Saikat DebRoy. Biostrings: String objects representing biological sequences, and matching algo- rithms. R package version, 2(0):10–18129, 2016.
[17] Aleksandra Synowiec, Artur Szczepan ́ski, Emilia Barreto-Duran, Lauren- sius Kevin Lie, and Krzysztof Pyrc. Severe acute respiratory syndrome coronavirus 2 (sars-cov-2): a systemic infection. Clinical microbiology reviews, 34(2):e00133– 20, 2021.
[18] The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 2015.
[19] Supaporn Wacharapluesadee, Chee Wah Tan, Patarapol Maneeorn, Prateep Duengkae, Feng Zhu, Yutthana Joyjinda, Thongchai Kaewpom, Wan Ni Chia, Weenassarin Ampoot, Beng Lee Lim, et al. Evidence for sars-cov-2 related coro- naviruses circulating in bats and pangolins in southeast asia. Nature communica- tions, 12(1):1–9, 2021.
[20] Andrew M Waterhouse, James B Procter, David MA Martin, Mich`ele Clamp, and Geoffrey J Barton. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9):1189–1191, 2009.
[21] Fan Wu, Su Zhao, Bin Yu, Yan-Mei Chen, Wen Wang, Zhi-Gang Song, Yi Hu, Zhao-Wu Tao, Jun-Hua Tian, Yuan-Yuan Pei, et al. A new coronavirus associated with human respiratory disease in china. Nature, 579(7798):265–269, 2020.
[22] Zi-Wei Ye, Shuofeng Yuan, Kit-San Yuen, Sin-Yee Fung, Chi-Ping Chan, and Dong-Yan Jin. Zoonotic origins of human coronaviruses. International journal of biological sciences, 16(10):1686, 2020.
[23] Jun Zhang, Yongfei Cai, Tianshu Xiao, Jianming Lu, Hanqin Peng, Sarah M Sterling, Richard M Walsh, Sophia Rits-Volloch, Haisun Zhu, Alec N Woosley, et al. Structural impact on sars-cov-2 spike protein by d614g substitution. Science, 372(6541):525–530, 2021.
[24] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete & Computational Geometry, 33(2):249–274, 2005.
[25] Afra Joze Zomorodian. Computing and comprehending topology: Persistence and hierarchical morse complexes. University of Illinois at Urbana-Champaign, 2001.