簡易檢索 / 詳目顯示

研究生: 張乃琪
Chang, Nai-Chyi
論文名稱: 高效率有機發光二極體激發複合發光元件之機制特性探討與元件製程優化
The mechanism, characteristics investigations and process optimization of high efficiency exciplex-based OLEDs
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 62
中文關鍵詞: 有機發光二極體激發複合態發光層蒸鍍率載子平衡
外文關鍵詞: OLED, exciplex, emission layer evaporation rate, carrier balance
相關次數: 點閱:82下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在OLED元件中,有一種發光型態是由不同的兩種分子受激發後組合而成,稱為激發複合態(exciplex)。其原理是利用最低的三重態能階相近之兩種材料混合作為發光層,此兩種有機材料一個利於電子傳輸,另一個則利於電洞傳輸;兩種材料分子受激發後因相近的激發態能階使電子雲疊合形成新的混成軌域,而電荷分別取自兩種不同分子之電荷傳輸層,產生新的放光能隙並放出不同的發光波長。
    本論文包含兩大部分,第一部分為研究不同發光層蒸鍍率的OLED exciplex發光主體元件之特性,並結合各種分析手法輔助了解不同蒸鍍率之發光層物理特性及電性。第二部分為改善電子電洞的傳導平衡,使兩種電荷的激子產生區能準確地位於發光層內,避免不必要的載子浪費,使整體元件效能再提升。
    由於exciplex發光能力與兩種不同分子的混合情況有關,因此為了使兩種有機分子在共蒸鍍時能極佳混合,本研究利用製程調控OLED元件的發光層蒸鍍率,探討改變蒸鍍率之exciplex發光層的各種特性,並結合量測結果盼能找出OLED元件運作機制,進而得到最佳的元件效能。找到了最佳的發光層蒸鍍率之後,本研究進一步透過改善元件電荷載子平衡,使得整體OLED元件效能可繼續往上提升。
    實驗結果發現,改變發光層蒸鍍率的確影響OLED exciplex發光元件效能。
    第一部分,本實驗選用的m-MTDATA與Bphen這組exciplex材料組合,在蒸鍍率為0.8 Å/s時發光層表面粗糙度最低、量測到的電容電壓值最大,製作的OLED元件效能在室內用亮度範圍500 nits以下表現最佳,其最高發光電流效率為61.0 cd/A,為參考元件的4倍左右。
    第二部分本實驗利用單一載子元件比較,得知使用HTL: 22 nm與ETL: 30 nm的元件厚度能達到最佳的載子平衡,加上製程使用0.8 Å/s的發光層蒸鍍率,最終做出本研究的最佳元件。元件效能在發光強度440 cd/m2左右表現最佳,其最高發光電流效率為71.5 cd/A,並發出552 nm左右的EL光譜,適合製作省電元件。

    In this thesis, we investigated the mechanism and characteristics of exciplex-based OLEDs by using m-MTDATA and Bphen because of the similar lowest triplet excited states as hole and electron transport organic materials with different emission layer process evaporation rates. We controlled emission layer process evaporation rates of OLED to make sure that two different electrical types of molecules were well-mixed. After that, we studied the improvement of carrier transport balance to make sure that carrier recombination region is accurately located in emission layer which helps to increase the use of excitons and improve OLED performance.
    First part, we obtained better OLED efficiency of 61.0 cd/A with minimum surface roughness and maximum capacitive-voltage when evaporation rate was 0.8 Å/s. This value is increased by 4.1 times over the reported data. Secondly, we found that as using 22 nm hole transport layer and 30 nm electron transport layer we could get the most carrier balanced devices. At the same time, we obtained the best OLED efficiency of 71.5 cd/A in our study at a luminous intensity of 440 cd/m2.

    目錄 摘要........................................................I Extended Abstract..........................................II 誌謝........................................................X 目錄.......................................................XI 表目錄....................................................XIV 圖目錄.....................................................XV 第一章 導論................................................1 1-1 前言....................................................1 1-2 有機發光二極體元件中激發複合現象之文獻回顧..............2 1-3 研究動機與實驗方向......................................4 1-4 本研究激發複合元件現象之重點文獻整理....................6 第二章 理論與基礎文獻回顧..................................7 2-1 受激發光理論............................................7 2-2 有機發光二極體的元件結構...............................10 2-3 有機發光二極體元件理論.................................12 2-3-1 電荷注入..........................................12 2-3-2 電荷傳遞..........................................13 2-4 有機發光二極體元件的發光概論...........................19 2-5 分子之間的能量轉移機制.................................22 2-5-1 Förster能量轉移...................................22 2-5-2 Dexter能量轉移....................................23 2-6 有機發光二極體元件各層材料介紹.........................25 2-6-1 電洞注入及傳輸層材料..............................25 2-6-2 電子傳輸層材料....................................25 2-6-3 電洞及電子傳輸材料組合之發光層....................26 2-6-4 電子注入層材料....................................26 2-6-5 低功函數陰極材料..................................26 2-6-6 紅色客體層材料....................................27 第三章 實驗步驟與方法.....................................28 3-1 元件製程及量測流程.....................................28 3-2 真空熱蒸鍍系統設備(Thermal Evaporation System).........29 3-3 實驗材料...............................................30 3-4 ITO基板的前置處理步驟..................................31 3-5 真空熱蒸鍍的實驗步驟...................................32 3-6 實驗量測與分析儀器.....................................33 3-6-1 單體沉積速率測定..................................33 3-6-2 電流-電壓-亮度及電致發光光譜量測..................33 3-6-3 變電壓阻抗頻譜量測................................33 3-6-4 光致發光光譜量測..................................34 3-6-5 原子力顯微鏡量測..................................34 3-6-6 紫外光/可見光光譜儀量測...........................34 第四章 結果與討論.........................................35 4-1 高效率OLED exciplex之EML製程蒸鍍率調控.................36 4-1-1 調控EML蒸鍍率之元件結構...........................36 4-1-2 調控EML蒸鍍率之元件亮度-電壓-電流密度關係.........36 4-1-3 調控EML蒸鍍率之發光層變電壓阻抗頻譜分析...........39 4-1-4 調控EML蒸鍍率之發光層AFM表面分析..................40 4-1-5 調控EML蒸鍍率之元件電致發光與發光層光致發光分析...41 4-1-6 調控EML蒸鍍率之發光層穿透光譜分析.................44 4-1-7 調控EML蒸鍍率之元件與發光層數據整理...............45 4-2 高效率OLED exciplex之元件載子平衡改善..................47 4-2-1 改善元件載子平衡之單一載子元件比較................47 4-2-2 改善元件載子平衡之元件結構........................50 4-2-3 改善元件載子平衡之元件亮度-電壓-電流密度與電致發光關係...50 4-2-4 改善元件載子平衡之加入紅色客體層檢查..............53 4-2-5 改善元件載子平衡之元件數據整理....................56 第五章 結論與未來展望.....................................57 5-1 結論...................................................57 5-2 未來展望...............................................58 參考文獻...................................................59

    [1] M. Pope, H.P. Kallmann and P. J. Magnante, “Electroluminescence in Organic Crystals,” Journal of Chemical Physics, 38, p. 2042 (1963).
    [2] C. W. Tang and S. A. Van Slyke, “Organic electroluminescent diodes,” Applied physics letters, 51, 12, p. 913 (1987).
    [3] C. W. Tang, S. A. Van Slyke and C. Chen, “Electroluminescence of doped organic thin films,” Journal of Applied Physics, 65, 9, p. 3610 (1989).
    [4] H. Leonhardt and A. Weller, “Elektronenubertragungsreaktionen des angeregten Perylens,” Ber Bunsenges Physics Chemical, 67, p. 791 (1963).
    [5] J. S. Wu, J. H. Zhou, et al., “New Fluorescent Chemosensor Based on Exciplex Signaling Mechanism,” Organic Letters, 7, 11, p. 2133 (2005).
    [6] D. Wang, W. L. Li, et al., “Broad wavelength modulating and design of organic white diode based on lighting by using exciplex emission from mixed acceptors,” Applied physics letters, 89, 233511 (2006).
    [7] C. H. Chang, S. W. Wu, et al., “Efficient red, green, blue and white organic light-emitting diodes with same exciplex host,” Japanese Journal of Applied Physics, 55, 03CD02 (2016).
    [8] D. Luo, Y. Xiao, et al., “Doping-free white organic light-emitting diodes without blue molecular emitter: An unexplored approach to achieve high performance via exciplex emission,” Applied physics letters, 110, 061105 (2017).
    [9] K. Goushi and C. Adachi, “Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes,” Applied physics letters, 101, 023306 (2012).
    [10] T. Zhang, B. Chu, et al., “Efficient Triplet Application in Exciplex Delayed-Fluorescence OLEDs Using a Reverse Intersystem Crossing Mechanism Based on a ΔES–T of around Zero,” ACS Applied Material & Interfaces, 6, 15, p. 11907 (2014).
    [11] K. Goushi, K. Yoshida, et al., “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nature Photonics, 6, p. 253 (2012).
    [12] X. K. Liu, Z. Chen, et al., “Prediction and Design of Efficient Exciplex Emitters for High‐Efficiency, Thermally Activated Delayed‐Fluorescence Organic Light‐Emitting Diodes,” Advanced Materials, 27, p. 2378 (2015).
    [13] Pelz, J. Leslie D. Stroebel and Richard D. Zakia (ed.). The Focal Encyclopedia of Photography (3E ed.). Focal Press. p. 467. ISBN 978-0-240-51417-8 (1993).
    [14] D. A. Skoog, F. J. Holler, and T. A. Nieman. Principles of Instrumental Analysis, 5th Ed. Brooks/Cole (1998).
    [15] D. Frackowiak, “The Jablonski diagram,” Journal of Photochemistry and Photobiology B: Biology, 2, p. 399 (1998).
    [16] A. L. Burin and M. A. Ratner, “Exciton Migration and Cathode Quenching in Organic Light Emitting Diodes,” The Journal of Physical Chemistry, 104, 20, p. 4704 (2000).
    [17] C. Adachi, S. Tokito, T. Tsutsui and S. Satio, “Organic electroluminescent device with a three-layer structure,” Japanese Journal of Applied Physics, 2, L713 (1988).
    [18] M. Era, C. Adachi, T. Tsutsui and S. Saito, “Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter,” Chemical Physics Letters, 178, p. 488 (1991).
    [19] S. R. Forrest, V. Bulovic and P. Peumans, “Organic photosensitive optoelectronic device with an exciton blocking layer,” US Patent, 6451415B1 (2002).
    [20] D. A. Neamen, Semiconductor Physics & Devices, 2nd Ed., p. 319.
    [21] S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
    [22] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor-Contacts (Clarendon, Oxford, 1988).
    [23] A. J. Champbell and D. D. C. Bradley, “Thermally activated injection limited conduction in single layer N,N′-diphenyl-N,N′-bis(3-methylphenyl)1-1′-bipheny
    l-4,4′-diamine light emitting diodes,” Journal of Applied Physics, 86, p. 5004 (1999).
    [24] I. H. Campbell, P. S. Davids, et al., “The Schottky energy barrier dependence of charge injection in organic light-emitting diodes,” Applied physics letters, 72, p. 1863 (1998).
    [25] P. S. Davids, I. H. Campell and D. L. Smith, “Device model for single carrier organic diodes,” Journal of Applied Physics, 82, p. 6319 (1997).
    [26] R. H. Fowler and L. Nordheim, “Electron Emission Intense Electic Fields,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 119, p. 173 (1928).
    [27] A. J. Heeger, I. Parker and Y. Yang, “Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling,” Synthetic Metals, 67, p. 23 (1994).
    [28] Y. Yang, E. Westerweele, et al., “Enhanced performance of polymer light-emitting diodes using high-surface area polyaniline network electrodes,” Journal of Applied Physics, 77, p. 694 (1995).
    [29] H. Vestweber, J. Pommerehne, et al., “Majority carrier injection from ITO anodes into organic light-emitting diodes based upon polymer blends,” Synthetic Metals, 68, p. 263 (1995).
    [30] P. S. Davids, S. M. Kogan, et al., “Charge injection in organic light-emitting diodes: Tunneling into low mobility materials,” Applied Physics Letters, 69, p. 2270 (1996).
    [31] D. V. Khramtchenkov, H. Bässler and V. I. Arkhipov, “A model of electroluminescence in organic double‐layer light‐emitting diodes,” Journal of Applied Physics, 79, p. 9283 (1996).
    [32] D. J. Pinner, R. H. Friend and N. Tessler, “Transient electroluminescence of polymer light emitting diodes using electrical pulses,” Journal of Applied Physics, 86, p. 5116 (1999).
    [33] A. J. Champbell, D. D. C. Bradley and D. G. Lidzey, “Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes,” Journal of Applied Physics, 82, p. 6326 (1997).
    [34] K. C. Kao and W. Hwang, Electrical Transport in Solids (Pergamon Press, New York, 1981).
    [35] W. Helfrich, Physics and Chemistry of the Organic Solid State (Interscience, New York, 1967).
    [36] H. C. F. Martens, J. N. Huiberts and P. W. M. Blom, “Simultaneous measurement of electron and hole mobilities in polymer light-emitting diodes,” Applied Physics Letters, 77, p. 1852 (2000).
    [37] P. W. M. Blom and M. C. J. M. Vissenberg, “Charge transport in poly (p-phenylene vinylene) light-emitting diodes,” Materials Science and Engineering: R: Reports, 27, p. 53 (2000).
    [38] P. W. M. Blom, H. C. F. Martens and J. N. Huiberts, “Charge transport in polymer light-emitting diodes,” Synthetic Metals, 121, p. 1621 (2001).
    [39] I. H. Campbell, D. L. Smith, et al., “Consistent time-of-flight mobility measurements and polymer light-emitting diode current–voltage characteristics,” Applied Physics Letters, 74, p. 2809 (1999).
    [40] J. C. Scott, P. J. Brock, et al., “Charge transport processes in organic light-emitting devices,” Synthetic Metals, 111, p. 289 (2000).
    [41] K. Unger, “Bestimmung von Hafttermspektren mit Hilfe von Glow‐Kurven,” physica status solidi (b), 2, p. 1279 (1962).
    [42] J. G. Simmons and M. C. Tam, “Theory of Isothermal Currents and the Direct Determination of Trap Parameters in Semiconductors and Insulators Containing Arbitrary Trap Distributions,” Physical Review B, 7, p. 3706 (1973).
    [43] G. P. Owen, J. Sworakowski, et al., “Carrier traps in ultra-high purity single crystals of anthracene,” Journal of the Chemical Society, Faraday Transactions 2, 70, p. 853 (1974).
    [44] A. J. Campbell, M. S. Weaver, et al., “Bulk limited conduction in electroluminescent polymer devices,” Journal of Applied Physics, 84, p. 6737 (1998).
    [45] M. Koehler and I. A. Hümmelgen, “Regional approximation approach to space charge limited tunneling injection in polymeric devices,” Journal of Applied Physics, 87, p. 3074 (2000).
    [46] S. B. Lee, K. Yoshino, et al., “Extrinsic photoconductivity in poly(3-dodecylthiophene) sandwich cells,” Physical Review B, 61, p. 2151 (2000).
    [47] C. C. Wu, J. K. M. Chun, et al., “Poly(p-phenylene vinylene)/tris(8-hydroxy) quinoline aluminum heterostructure light emitting diode,” Applied Physics Letters, 66, p. 653 (1995).
    [48] G. Y. Jung, C. Pearson, et al., “The effect of insulating spacer layers on the electrical properties of polymeric Langmuir-Blodgett film light emitting devices,” Journal of Physics D: Applied Physics, 33, p. 1029 (2000).
    [49] V. C. Bender, T. B. Marchesan, J. M. Alonso, “Solid-State Lighting: A Concise Review of the State of the Art on LED and OLED Modeling,” IEEE Industrial Electronics Magazine, 9. (2015).
    [50] M. A. Baldo, M. E. Thompson and S. R. Forrest., “High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer,” Nature, 403, p. 750 (2000).
    [51] H. Tanaka, K. Shizu, et al., “Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine–triphenyltriazine (PXZ–TRZ) derivative,” Chemical Communications, 48, p. 11392 (2012).
    [52] O. V. Mikhnenko. Dynamics of Singlet and Triplet Excitons in Organic Semiconductors. Groningen: s.n. (2012).
    [53] D. Wang, W. Li, et al., “Highly efficient green organic light-emitting diodes from single exciplex emission,” Applied Physics Letters, 92, 053304 (2008).
    [54] F. Zhang, S. Zhao, et al., “Electroplex emission from bi-layer blue emitting organic materials,” Physica Scripta, 75, p. 407 (2007).
    [55] L. Zhu, K. Xu, et al., “High efficiency yellow fluorescent organic light emitting diodes based on m-MTDATA/BPhen exciplex,” Frontiers of Optoelectronics, 8, p. 439 (2015).
    [56] P. Tyagi, R. Srivastava, et al., “Degradation of organic light emitting diode: Heat related issues and solutions,” Synthetic Metals, 216, p. 40 (2016).
    [57] K. B. Kim, Y. H. Tak, et al., “Relationship between Surface Roughness of Indium Tin Oxide and Leakage Current of Organic Light-Emitting Diode,” Japanese Journal of Applied Physics, 42, No. 4B (2003).
    [58] W. Jiang, L. Duan, et al., “Tuning of Charge Balance in Bipolar Host Materials for Highly Efficient Solution-Processed Phosphorescent Devices,” Organic letters, 13, 12, p. 3146 (2011).

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE