簡易檢索 / 詳目顯示

研究生: 葉峻睿
Yeh, Chun-Jui
論文名稱: 採用混合雙饋式感應發電機與永磁同步發電機之新型風力發電系統穩定度分析
Stability Analysis of Novel Wind Power Generation Systems Using Hybrid DFIG and PMSG
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 148
中文關鍵詞: 雙饋式感應發電機永磁式同步發電機風力發電系統穩定度
外文關鍵詞: Doubly-fed induction generator, permanent-magnet synchronous generator, wind power generation system, stability
相關次數: 點閱:152下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了兩種結合雙饋式感應發電機與永磁式同步發電機優點的新型風力發電系統架構,並與以雙饋式感應發電機為基礎的傳統風力發電系統互相比較其運轉特性與穩定度。本論文於三相平衡的條件下利用交直軸等效電路數學模型,分別建立了三種不同型式的風力發電系統架構。於穩態特性方面,分析了不同工作條件變動的情況下對系統特性之影響;在動態模擬方面,完成了不同干擾條件下之模擬結果。由模擬結果分析得知:本論文所提出的兩種新型風力發電系統架構,能比傳統以雙饋式感應發電機為基礎的風力發電系統具有較高的運轉效率與較佳的穩定度。

    This thesis presents two novel wind power generation systems (WPGSs) that combine the advantages of a doubly-fed induction generator (DFIG) with a permanent-magnet synchronous generator (PMSG). The operating characteristics and stability of the two WPGSs are also compared with the ones of a traditional DFIG-based WPGS. The q-d axis equivalent mathematical models of the studied WPGSs are developed under three-phase balanced loading conditions. Steady-state characteristics of the studied WPGSs under various operating conditions are examined while dynamic simulations of the studied WPGSs subject to different disturbances are also carried out. It can be concluded from the simulation results that the proposed two novel WPGSs can have higher operating efficiency and better stability than the traditional DFIG-based WPGS.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XI 第一章 緒論 1 1-1 研究背景與研究動機 1 1-2 相關文獻回顧 5 1-3 本論文之貢獻 11 1-4 研究內容概述 12 第二章 系統數學模型 13 2-1 前言 13 2-2 系統架構 14 2-3 風速之數學模型 21 2-4 風力渦輪機之數學模型 24 2-5 旋角控制器之數學模型 30 2-6 風力渦輪機與發電機間轉矩之數學模型 32 2-7 雙饋式感應發電機之數學模型 37 2-8 永磁式同步發電機之數學模型 41 2-9 電力電子轉換器之數學模型 43 2-9-1雙饋式感應發電機轉子側轉換器 43 2-9-2雙饋式感應發電機電網側轉換器 45 2-9-3永磁式同步發電機定子側轉換器 46 2-9-4永磁式同步發電機電網側轉換器 51 第三章 系統之穩態分析 52 3-1 前言 52 3-2 風速變動之穩態分析 53 3-2-1 架構一之穩態分析 53 3-2-2 架構二之穩態分析 66 3-2-3 架構三之穩態分析 79 3-2-4 三種架構於風速變動之穩態結果分析 90 3-3電網端電壓變動之穩態分析 93 3-3-1 架構一之穩態分析 93 3-3-2 架構二之穩態分析 101 3-3-3 架構三之穩態分析 110 3-3-4 三種架構於電網端電壓變動之穩態結果分析 118 第四章 系統之動態及暫態分析 120 4-1 前言 120 4-2 系統發生轉矩干擾時,三種架構之動態響應 121 4-3 系統發生風速變動時,三種架構之動態響應 125 4-4 系統發生電網端三相短路故障時,三種架構之暫態響應 129 第五章 結論與未來研究方向 138 5-1 結論 138 5-2 未來研究方向 140 參考文獻 142 附錄 145 作者簡介 146

    [1] United Nations Framework Convention on Climate Change, http://unfccc.int/2860.php, retrieved date: Apr. 5, 2012.
    [2] 江榮城,“台灣風力發電運轉經驗及未來展望”,環保資訊月刊,第97期,第11-18頁,2006年5月。
    [3] 台灣電力公司,風力發電第四期計畫可行性研究報告,台灣電力公司,2011年6月。
    [4] World Wind Energy Association, http://www.windea.org, retrieved date: Apr. 3, 2012.
    [5] 國立中央大學台灣風能網頁。http://www.atm.ncu.edu.tw/93/ wind/main.asp, retrieved date: Nov. 3, 2011.
    [6] M. Kaltschmitt, W. Streicher, and A. Wiese, Renewable Energy: Technology, Economics, and Environment, New York: Springer, 2007.
    [7] K. Huang, L. Zheng, S. Huang, L. Xiao, and W. Li, “Sensorless control for direct-drive PMSG wind turbines based on sliding mode observer,” in Proc. 2011 International Electrical Machines and Systems Conference, Beijing, China, Aug. 20-23, 2011, pp. 1-5.
    [8] A. O. Ibrahim, T. H. Nguyen, D.-C. Lee, and S.-C. Kim, “A fault ride-through technique of DFIG wind turbine systems using dynamic voltage restorers,” IEEE Trans. Energy Conversion, vol. 26, no. 3, pp. 871-882, Sep. 2011.
    [9] J. Morren and S. Haan, “Short-circuit current of wind turbines with doubly-fed induction generator,” IEEE Trans. Energy Conversion, vol. 22, no. 1, pp. 174-180, Mar. 2007.
    [10] S. Morimoto, H. Nakayama, M. Sanada, and Y. Takeda, “Sensorless output maximization control for variable-speed wind generation system using IPMSG,” IEEE Trans. Industry Applications, vol. 41, no. 1, pp. 60-68, Jan. 2005.
    [11] W. Qiao, W. Zhou, J. M. Aller, and R. G. Harley, “Wind speed estimation based sensorless output maximization control for a wind turbine driving a DFIG,” IEEE Trans. Power Electronics, vol. 23, no. 3, pp. 1156-1169, May 2008.
    [12] B. C. Pal and F. Mei, “Modelling adequacy of the doubly-fed induction generator for small-signal stability studies in power systems,” IET Renewable Power Generation, vol. 2, no. 3, pp. 181-190, Sep. 2008.
    [13] Y. Mishra, S. Mishra, F. Li, Z.-Y. Dong, and R. C. Bansal, “Small-signal stability analysis of a DFIG-based wind power system under different modes of operation,” IEEE Trans. Energy Conversion, vol. 24, no. 4, pp. 972-982, Dec. 2009.
    [14] L. G. Meegahapola, T. Littler, and D. Flynn, “Decoupled-DFIG fault ride-through strategy for enhanced stability performance during grid faults,” IEEE Trans. Sustainable Energy, vol. 1, no. 3, pp. 152-162, Oct. 2010.
    [15] R. Takashi, H Ichita, J. Tamura, M. Kimura, M. Ichinose, M. Futami, and K. Ide, “Efficiency calculation of wind turbine generation system with doubly-fed induction generator,” in Proc. 2010 International Electrical Machines Conference, Rome, Italy, Sep. 6-8, 2010, pp. 1-4.
    [16] A. Mesemanolis, C. Mademlis, and I. Kioskeridis, “Maximum efficiency of a wind energy conversion system with a PM synchronous generator,” in Proc. 2010 Power Generation, Transmission, Distribution, and Energy Conversion Conference, Agia Napa, Cyprus, Nov. 7-10, 2010, pp. 1-9.
    [17] L.-Y. Zhao, J. Østergaard, Z.-Y. Dong, K.-P. Wong, and X. Ma, “Oscillatory stability and eigenvalue sensitivity analysis of a DFIG wind turbine system,” IEEE Trans. Energy Conversion, vol. 26, no. 1, pp. 328-339, Mar. 2011.
    [18] H. Huang, C. Mao, J. Lu, and D. Wang, “Small-signal modelling and analysis of wind turbine with direct drive permanent magnet synchronous generator connected to power grid,” IET Renewable Power Generation, vol. 6, no. 1, pp. 48-58, Jan. 2012.
    [19] S. Li, T. A. Haskew, R. P. Swatloski, and W. Gathings, “Optimal and direct-current vector control of direct-driven PMSG wind turbines,” IEEE Trans. Power Electronics, vol. 27, no. 5, pp. 2325-2336, May 2012.
    [20] F. Mei, Small-Signal Modelling and Analysis of Doubly-Fed Induction Generators in Wind Power Applications, Ph.D. dissertation, Dept. of Electrical and Electronic Engineering, University of London, Jul. 2010.
    [21] P. M. Anderson and A. Bose, “Stability simulation of wind turbine systems,” IEEE Trans. Power Apparatus and Systems, vol. 102, no. 2, pp. 3791-3795, Dec. 1983.
    [22] S. Morimoto, Y. Tong, Y. Takeda, and T. Hirasa, “Loss minimization control of permanent magnet synchronous motor drives,” IEEE Trans. Industrial Electronics, vol. 41, no. 5, pp. 511-517, Oct. 1994.
    [23] H. Zhang, S. Cao, S. Wang, and F. Yu, “The analysis of steady-state characteristics of doubly-fed induction generator,” in Proc. 2010 IEEE International Advanced Management Science Conference, Chengdu, China, Jul. 9-11, 2010, pp. 195-197.
    [24] J. G. Slootweg, H. Polinder, and W. L. Kling, “Dynamic modelling of a wind turbine with doubly-fed induction generator,” in Proc. 2001 IEEE Power Engineering Society Summer Meeting, Vancouver, Canada, Jul. 15-19, 2001, pp. 644-649.
    [25] F. Wu, X.-P. Zhang, K. Godfrey, and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly-fed induction generator,” IET Generation, Transmission and Distribution, vol. 1, no. 5, pp. 751-760, Sep. 2007.
    [26] S. J. Chapman, Electric Machinery Fundamentals, New York: McGraw-Hill, 1991.
    [27] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, 1977.
    [28] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 1986.
    [29] 黎昭男,飛輪儲能系統於整合離岸式風場與潮流場之動態穩定度改善研究,國立成功大學電機工程學系碩士論文,民國九十九年七月。
    [30] 李浩文,利用超導儲能系統以及整合型功率潮流控制器於整合離岸式風場與沿岸波浪場之功率潮流控制及穩定度分析,國立成功大學電機工程學系碩士論文,民國一百年七月。
    [31] 武光山,採用靜態同步串聯補償器於含有雙饋式感應發電機風場之大型電力系統動態穩定度改善,國立成功大學電機工程學系碩士論文,民國一百年七月。

    下載圖示 校內:2017-08-29公開
    校外:2017-08-29公開
    QR CODE