簡易檢索 / 詳目顯示

研究生: 許文陽
Hsu, Wen-Yang
論文名稱: 黏性泥沙動力特性之試驗與數值研究
An experimental and numerical investigation on dynamics of cohesive sediment
指導教授: 黃煌煇
Hwung, Hwung-Hweng
共同指導教授: 修崗. 伊格爾
Igor V. Shugan
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 137
中文關鍵詞: 波泥交互作用沉降內波運動邊界層表面波衰減流變
外文關鍵詞: wave-mud interaction, settling, interfacial wave, boundary layer structure, surface wave damping, rheology
相關次數: 點閱:85下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在藉由實驗與數值模擬來探討泥質之動力特性,包含靜水中的沉降行為以及在不同水動力作用下波浪與底泥之交互作用。上述研究子題分別隸屬於泥質輸沙過程與分層流動力學。此外,由於泥質有高度黏滯性,表面波通過泥質底床數個波長後即發生顯著的能量消散。在沉降與波泥交互作用實驗中所使用的底質材料分別為現場的泥沙以及高嶺土。
    在靜水沉降試驗中,我們將評估擾動擴散效應在泥質沉降中所扮演的角色。一般而言,擾動擴散是由於泥質在沉降過程中所引致的尾流、浮力與黏滯性所造成。在本研究中,我們用濃度函數來分別表示沉降速度與擴散係數,將其引入對流擴散方程式,並進一步利用實驗方法搭配最小二乘法來決定濃度函數中的係數。實驗結果指出沉降通量與擴散通量的大小對於泥值沉降有極大的影響性,其中擴散係數最大可達到水分子擴散的1萬倍,並且隨濃度變化。在對流方程式引入擴散項後,我們發現在沉降過程中所發現的泥水交界面或均勻沉降可以被完整的描述。
    在波泥交互作用過程中,往往引起下層泥波的運動。根據過去的文獻,除了底泥黏滯性的影響外,泥波的運動可能進一步造成表面波衰減。本研究子題將進一步探討黏滯性作功與泥波運動對於表面波衰減之重要性。此外,泥波運動可能在某些表面波頻率作用下會發生共振現象,發生共振的與否將決定研究波泥交互作用時,選取不同的流變模式。本實驗在分層流體中進行,其中上層為清水而下層為完全液化且濃度均勻分布的泥層,搭配不同波高、週期與濃度來探討表面波衰減。流場可視化技巧與波高計分別量測內波與表面波的運動。實驗指出內波的振幅與相對水深成高度相關。另外,根據內波震盪的頻率與實驗觀察,泥波運動與表面波呈現同步運動。因此,表面波的衰減在本研究中將由黏滯性所主宰。
    另一方面,我們應用上述的實驗並配合數值方法來探討由黏滯剪應力所造成的表面波衰減。根據流變分析,高嶺土呈現非牛頓流體,同時擁有賓漢流體與偽塑性等特性。此外,藉由量測泥層內之時序列流場剖面進一步分析,泥層內的剪應變在波浪作用下隨相位變化而大幅的變動。進一步結合剪應變與流變分析,反推出的時序列黏滯性之最大與最小值差異可達到10倍左右。然而,計算的剪應力僅在其平均值上下震幅25%。因此,波浪平均的剪應力可以藉由參數化分析來進一步推估表面波衰減。另一方面,採用牛頓流體之線性/非線性模式加以分析來與實驗結果比較。結果指出,當模式採用量測的黏滯性時,其模擬之表面波衰減整體為高估。然而當模式採用擬合表面波衰減之黏滯性時,泥層內的流場卻與實驗無法吻合。整體而言,實驗與模擬的差異在波浪能量較大時將會減少。研究也發現線性模式與非線性模式的差異在低波浪能量時變得較為顯著。據此,非牛頓流變可能放大波浪非線性的影響。一般而言,模式採用常數黏滯性只有在當波浪能量較大時才適用。

    This dissertation aims at employing laboratory experiments and numerical modeling to investigate behavior of cohesive sediment, including sedimentation in static water and wave-mud interaction in a two layer system under different wave loadings. The first process is part of fine sediment transport, while the other belongs to wave hydrodynamic problem and usually accompanied with significant wave damping. Used sediments are in-situ sediment and pure kaoline, respectively.
    For sedimentation, the main focusing is to evaluate how diffusion affects the settling of cohesive sediments. We calculate the settling velocity and diffusion coefficient using the complete advection-diffusion (A-D) equation, where concentration-dependent settling velocity and diffusion coefficients are introduced. In order to solve the A-D equation via least-squares method, a series of experiments were conducted with different suspended concentration. The experimental results indicate that the competition between settling flux and diffusive flux at various suspended sediment concentrations (SSC) can dramatically change the settling process. The diffusion coefficient can reach 102~104 times the molecular diffusion, which depends on the local concentration. Finally, the results reveal that suspensions of cohesive sediment can settle with one interface or no interface when diffusion is introduced, depending on the magnitude of the diffusive flux.
    The generation of internal waves induced by surface wave in the fluid mud environment is examined via laboratory experiment in order to study its importance on surface wave damping. As wave propagates over soft muddy bottom, both viscous shear stress and interfacial motion contribute to energy dissipation. Moreover, identifying oscillatory mode of internal wave is critical on selecting suitable rheological model when study wave-mud interaction. A fully fluidized mud layer with a homogeneous concentration distribution is created to investigate the resulting energy dissipation for different wave heights, periods and mud densities. Visualization technique and wave gages were applied to measure interfacial motion and surface wave damping, respectively. Experimental results suggest that the induced interfacial amplitude depends mainly on the relative water depth, and the mode of internal oscillation was identified. Finally, based on the derived energy equation for two-layer system, we find that the surface wave damping caused by mud motion is minor.
    On the other hand, wave attenuation caused by the work done by shear stress is investigated via laboratory experiments and numerical modeling. Rheological behavior of kaoline exhibits hybrid properties of Bingham and pseudo-plastic fluid. Moreover, the measured time-dependent velocity profiles in the mud layer reveal that the shear rate under wave loading is highly phase-dependent. Measured shear rate and rheological data allow us to back-calculate the time-dependent viscosity of the mud layer under various wave loading, which is also shown to fluctuate up to one order of magnitude during one wave period. However, the resulting time-dependent bottom stress is shown to only fluctuate within 25% of its mean. Measured wave-averaged bottom stress is well-correlated with wave damping rate in the intermediate wave energy condition. Commonly adopted constant viscosity assumption is then evaluated via linear and nonlinear wave-mud interaction models. When driving the models with measured wave-averaged mud viscosity (forward modeling), wave damping rate is generally over-predicted for low wave energy condition. On the other hand, when a constant viscosity is chosen to match the observed wave damping rate (backward modeling), the predicted velocity profiles in the mud layer are not satisfactory and the corresponding viscosity is lower than the measured value. These discrepancies are less pronounced when waves become more energetic. Differences between the linear and nonlinear model results become significant in low energy condition, suggesting an amplification of wave nonlinear effect due to non-Newtonian rheology. In general, the constant viscosity assumption for modeling wave-mud interaction is only appropriate for more energetic wave condition

    Abstract I 中文摘要 III Acknowledgement V Contents VI List of tables X List of figures XI List of acronym XVI List of symbols XVII 1 Introduction 1 1.1 Background 1 1.2 Sedimentation 3 1.3 Wave-mud interaction 8 1.3.1 Interfacial mud motion 8 1.3.3 Surface wave damping 11 1.4 Outline of the dissertation 15 2 Description of experiment and numerical modeling 18 2.1 Settling experiment 18 2.1.1 Facilities 18 2.1.2 Experimental setup and procedures 21 2.2 Wave-mud experiment 21 2.2.1 Facilities 22 2.2.2 Experimental procedures 23 2.3Models 29 2.3.1 1-D settling model 29 2.3.2 Linear wave-mud model 31 2.3.3 Nonlinear wave-mud model 34 3 Characterization of muds 40 3.1 Physical-chemical properties 40 3.2 Rheological properties 43 3.3 Verification of concentration distribution 49 3.4 Time-dependent velocity profiles in the mud layer 55 4 Settling behavior 59 4.1 Solving concentration-dependent settling and diffusion 59 4.2 The relative importance of settling and diffusion 63 4.3 Settling of cohesive sediment 67 4.3.1 Solving the integrated mass balance equation 67 4.3.1 Settling behavior of 6180 mud in static water 67 4.4 Conclusions 71 5 Interfacial mud motion 73 5.1 Interfacial mud motion 73 5.1.1 Detection of surface wave and interfacial wave profiles 73 5.1.2 The amplitude ratio and oscillatory mode 80 5.2 The effect of interfacial wave on surface damping 83 5.2.1 Potential energy in two-layer system 83 5.3 Conclusions 87 6 Surface damping and rheological response under wave-mud interaction 89 6.1 Wave damping 89 6.2 Time-dependent velocity profiles 95 6.3 Intra-wave rheological response 99 6.4 Wave-averaged rheological response 102 6.5 Forward and inverse modeling 109 6.6 Limitations 115 6.7 Conclusions 116 7. Conclusion 118 7.1 Summary 118 7.1.1 Sedimentation 118 7.1.2 Interfacial mud motion 119 7.1.3 Wave-mud interaction 120 7.2 Future Work 121 References 123 Vita 134

    Aagaard, T and Holm J, (1989). Digitization of wave run-up using video records J. Coast. Res. 5 547–51
    Alam, M. R., Y. M. Liu, et al. (2011). Attenuation of short surface waves by the sea floor via nonlinear sub-harmonic interaction, Journal of Fluid Mechanics 689: 529-540.
    Ball, F. K. (1964) Energy transfer between external and internal gravity waves. J. Fluid Mech. 19,465-478.
    Bonmarin, P., R. Rochefort, et al. (1989). "Surface-wave profile measurement by image-analysis." Experiments in Fluids 7(1): 17-24.
    Booij, N., Ris, R. C., and Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions. Part I: Model description and validation. J. Geophys. Res., 104(C4), 7649–7666.
    Brogioli, D., and A. Vailati (2001), Diffusive mass transfer by nonequilibrium fluctuations: Fick's law revisited, Physical Review E, 63(1).
    Burger, R. and W. L. Wendland (2001), Sedimentation and suspension flows: Historical perspective and some recent developments. Journal of Engineering Mathematics 41(2-3): 101-116.
    Canny, John, "A Computational Approach to Edge Detection, (1986)," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 6, pp. 679-698.
    Chau, K.W. (2002). Field measurements of SOD and sediment nutrient fluxes in a land-locked embayment in Hong Kong. J. Advances in Environment Research, 6, 135-142.

    Chanson, H., S. Jarny, et al. (2006). Dam break wave of thixotropic fluid. Journal of Hydraulic Engineering-Asce 132(3): 280-293.
    Chang, H.H., W.Y. Hsu, R.Y. Yang, H.H. Hwung. (2011), Calibration of Acoustic Backscatter System and Its Application. Proceedings of the 33rd Ocean Engineering Conference in Taiwan, 763-768
    Chan, I.‐C., and P. L.‐F. Liu (2009), Responses of Bingham‐plastic muddy seabed to surface solitary wave, J. Fluid Mech., 618, 155–180.
    Chou, F. N. F. and C. W. Wu (2010). "Reducing the impacts of flood-induced reservoir turbidity on a regional water supply system. Advances in Water Resources 33(2): 146-157.
    Dalrymple, R. A., and P. L.‐F. Liu (1978), Waves over soft muds: A twolayer fluid model, J. Phys. Oceanogr., 8, 1121–1131.
    Dietrich, W.E., (1982). Settling velocity of natural particles. Wat.Resour. Res. 18, 1615–1626.
    Dyer, K. R. (1989), Sediment processes in estuaries : future research requirements, Journal of Geophysical Research-Oceans, 94(C10), 14327-14339.
    De Wit, P. J. (1992a), Rheological measurements on artificial muds, Report no.9-92, Delft Univ. Tech., The Netherlands
    De Wit, P. J. (1994), Liquefaction and erosion of mud due to waves and current- experiments on China Clay, Report no. 10-92, Delft Univ. Tech., The Netherlands
    De Wit, P. J. (1995), Liquefaction of cohesive sediment by waves, Ph.D. thesis, Delft Univ. of Technol., Delft, The Netherlands.
    Dankers, P. J. T., and J. C. Winterwerp (2007), Hindered settling of mud flocs: Theory and validation, Continental Shelf Research, 27(14), 1893-1907.
    Diehl, S. (2008), The solids-flux theory - Confirmation and extension by using partial differential equations, Water Research, 42(20), 4976-4988.
    Elgar, S. and B. Raubenheimer (2008). "Wave dissipation by muddy seafloors." Geophysical Research Letters 35(7).
    Ferry, J., and S. Balachandar (2001), A fast Eulerian method for disperse two‐phase flow, Int. J. Multiphase Flow, 27, 1199–1226.
    Foda, M. A., J. R. Hunt, and H.‐T. Chou (1993), A nonlinear model for the fluidization of marine mud by waves, J. Geophys. Res., 98(C4), 7039–7047.
    Fennessy, M. J., K. R. Dyer, and D. A. Huntley (1994), INSSEV - an instrument to measure the size and settling velocity of flocs in-situ, Marine Geology, 117(1-4), 107-117.
    Fugate, D. C. (2002), Determining concentration and fall velocity of estuarine estuarine particle populations using ADV, OBS and LISST, Continental Shelf Research.
    Frigaard, I. A. and C. Nouar (2005). On the usage of viscosity regularisation methods for visco-plastic fluid flow computation. Journal of Non-Newtonian Fluid Mechanics 127(1): 1-26.
    Gade, H. G. (1958), Effects of a nonrigid, impermeable bottom on plane surface waves in shallow water, Journal of Marine Research, 16, 61–82.
    Gibbs, R. J. (1985), Estuarine flocs - their size, settling velocity and density, Journal of Geophysical Research-Oceans, 90(NC2), 3249-3251.
    Geyer, W. R., P. S. Hill, and G. C. Kineke (2004), The transport, transformation and dispersal of sediment by buoyant coastal flows, Cont. Shelf Res., 24, 927–949, doi:10.1016/j.csr.2004.02.006.
    Hayter, EJ, Mehta, AJ (1982) Modeling of estuarial fine sediment transport for tracking pollutant movement. Final report No. UFL/COEL-8 L/009, University of Florida
    Hill, D. F. & Foda, M. A. (1998), Subharmonic resonance of oblique interfacial waves by a progressive surface wave. Proc. R. Soc. Lond. A. 454, 1129–1144.
    Hamm, L., Migniot, C., (1994). Elements of cohesive sediment deposition, consolidation and erosion. In: Abbott, M.B., Price, W.A. (Eds.), Coastal, Estuarial and Harbour Engineers' Reference Book. E and FN Spon, Melbourne, pp. 93–106.
    Hill, D.F., Foda, M.A., (1999). Effects of viscosity and elasticity on the nonlinear resonance of internal waves. Journal of Geophysical Research 104 (C5), 10 951-10 958.
    Hsu, T. J., J. T. Jenkins, and P. L. F. Liu (2003), On two-phase sediment transport: Dilute flow, Journal of Geophysical Research-Oceans, 108(C3).
    Ha, H. K., W. Y. Hsu, et al. (2009). "Using ADV backscatter strength for measuring suspended cohesive sediment concentration. Continental Shelf Research, 29(10): 1310-1316.
    Hsu, T. J. and P. L. F. Liu (2004). "Toward modeling turbulent suspension of sand in the nearshore." Journal of Geophysical Research-Oceans 109(C6).
    Hsu, T.-J., C. E. Ozdemir, and P. A. Traykovski (2009), High-resolution numerical modeling of wave-supported gravity-driven mudflows, J. Geophys. Res., 114, C05014, doi:10.1029/2008JC005006.
    Jonsson, I. G. (1966): Wave boundary layers and friction factors. Proc 10th Int. Conf. Coastal Engineering, Tokyo, 127-148
    Jaramillo, S., A. Sheremet, M. A. Allison, A. H. Reed, and K. T. Holland (2009), Wave-mud interactions over the muddy Atchafalaya subaqueous clinoform, Louisiana, United States: Wave-supported sediment transport, J. Geophys. Res., 114, C04002, doi:10.1029/2008JC004821.
    Jha, S. K., and F. A. Bombardelli (2010), Toward two-phase flow modeling of nondilute sediment transport in open channels, Journal of Geophysical Research-Earth Surface, 115.
    Kaihatu, J. M., A. Sheremet, and K. T. Holland (2007), A model for wave propagation of nonlinear surface waves over viscous mud, Coastal Eng.,54, 752–764.
    Kranenburg, C. (1994), The fractal structure of cohesive sediment aggregates, Estuarine Coastal and Shelf Science, 39(5), 451-460.
    Kranenburg, W. M., Winterwerp, J. C., de Boer, G. J., Cornelisse, J. M., Zijlema, M. (2011). "SWAN-Mud: Engineering Model for Mud-Induced Wave Damping." Journal of Hydraulic Engineering-Asce 137(9): 959-975.
    Krone, R. B. (1963), A study of rheologic properties of estuarial sediments Ser. Rep. 63-8, Hydraul. Eng. Lab. and Sanitary Res. Lab., Univ. of Calif., Berkeley.
    Lim, Jae S., (1990), Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall, , pp. 478-488.
    Lin, P., and P. L.‐F. Liu (1998), A numerical study of breaking waves in the surf zone, J. Fluid Mech., 359, 239–264.
    Le Hir, P., P. Bassoulet, and H. Jestin (2001), Application of the continuous modeling concept to simulate high‐concentration suspended sediment in a macro‐tidal estuary, in Coastal and Estuarine Fine Sediment Processes, edited by W. H. McAnally and A. J. Mehta, Elsevier, Amsterdam.
    Lee, T.H., Hanes, D.M., (1995). Explicit solution to the acoustic backscatter equation to measure the concentration of uniform, suspended particles. Journal of Geophysical Research 100 (C2), 2649-2657.
    Liu, P. L. F. and I. C. Chan (2007). A note on the effects of a thin visco-elastic mud layer on small amplitude water-wave propagation. Coastal Engineering 54(3): 233-247.
    Liu, C.M., Hsu, W.Y., Yang, R.Y. and H. H. Hwung (2011), “Physical Modeling for Wave-Mud Interaction”, Advanced in Engineering Research, Vol. 3, pp. 455-467
    Maxey, M. R. (1987), The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields, J. Fluid Mech., 174, 441–465.
    Moore F (1959) The rheology of ceramic slips and bodies. Trans Brit Ceramic Soc 58:470-494
    McPherson, H. (1980), The attenuation of water waves over non‐rigid bed, J. Fluid Mech., 97(4), 721–742.
    Mandersloot, W.G.B., Scott, K.J., Geyer, C.P., (1986). Sedimentation in the hindered settling regime. In: Muralidhare, H.S., (Ed.), Advances in Solid–Liquid Separation. Battle Press, Columbia, USA, pp. 63–77 (Chapter 3).
    Mehta, A. J. (1986), Characterization of cohesive sediment properties and transport processes in estuaries, in Estuarine Cohesive Sediment Dynamics, edited by A. J. Mehta, pp. 290-325, Springer-Verlag, New York
    Mei, C. C., and K.‐F. Liu (1987), A Bingham‐plastic model for a muddy seabed under long waves, J. Geophys. Res., 92(C13), 14,581–14,594.
    Mehta, A. J. (1989), On estuarine cohesive sediment suspension behavior Journal of Geophysical Research-Oceans, 94(C10), 14303-14314.
    Maa, J. P. Y. and A. J. Mehta (1990). Soft mud response to water-waves. Journal of Waterway Port Coastal and Ocean Engineering-Asce 116(5): 634-650.
    Mathew, J., M. Baba, and N. Kurian (1995), Mudbanks of the southwest coast of India I: Wave characteristics, J. Coastal Res., 11, 168– 178.
    Mehta, A.J., (1994). Hydraulic behaviour of fine sediment. In: Abbott, M.B., Price,W.A. (Eds.), Coastal, Estuarial and Harbour Engineers,Reference Book. E and FN Spon, Melbourne, pp. 577–584.
    Merckelbach, L. M., Kranenburg, C., and J. C., Winterwerp, (2002). Strength modeling of consolidating mud beds, in Fine Sediment Dynamics in the Marine Environments, Editors: J. C. Winterwerp and C. Kranenburg, 359-373, Elsevier.
    Merckelbach, L. M., Kranenburg, C., (2005). Determining effective stress and permeability equations for soft mud from simple laboratory experiments, Geotechnique, 54 (4), 581-591.
    Mantovartelli, A. and P. V. Ridd (2006). "Devices to measure settling velocities of cohesive sediment aggregates: A review of the in situ technology. Journal of Sea Research 56(3): 199-226.
    Muttil, N., and Chau, K.W. (2007). “Machine-learning paradigms for selecting ecologically significant input variables.” J. Engineering Applications of Artificial Intelligence, 20, 735–744.
    Mei, C. C., M. Krotov, et al. (2010). Short and long waves over a muddy seabed, Journal of Fluid Mechanics 643: 33-58.
    Nagai T, Yamamoto T, Figuerou L. (1984). A laboratory experimentation on the interactions between water waves and soft clay bed. Coast Eng Jpn. 27, 279–292.
    Otsubo K, Muraoka K (1988) Critical shear stress of cohesive bottom sediments. J Hydraulics Eng 114–10:1241–1256
    Ozdemir, C. E., Hsu, T.-J., Balachandar, S., (2010) A numerical investigation of fine particle laden flow in oscillatory channel: the role of particle-induced density stratification, J. Fluid Mech., 665, 1-45.
    Parker, James R., Algorithms for Image Processing and Computer Vision (1997), New York, John Wiley & Sons, Inc., pp. 23-29.
    Parau, E. and F. Dias (2001). "Interfacial periodic waves of permanent form with free-surface boundary conditions." Journal of Fluid Mechanics 437: 325-336.
    Park, K., Jung, H. S., Kim, H. S., and Ahn, S. M. (2005). “Three-dimensional hydrodynamic-eutrophication model (HEM-3D): application to Kwang-Yang Bay,Korea.” J. Marine Environmental Research, 60, 171–193.
    Ris, R. C., Booij, N., and Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions. Part II: Verification. J. Geophys. Res., 104(C4), 7667–7681.
    Rogers, W. E., and K. T. Holland (2009), A study of dissipation of wind waves by mud at Cassino Beach, Brazil: Prediction and inversion, Cont. Shelf. Res., 29, 676–690.
    Sakakiyama, T. and E. W. Bijker (1989). Mass-transport velocity in mud layer due to progressive waves. Journal of Waterway Port Coastal and Ocean Engineering-Asce 115(5): 614-633.
    Scarlatos, P.D., Mehta, A.J., (1992). Instability and entrainment mechanisms at the stratified fluid mud-water interface, nearshore and estuarine cohesive sediment transport. Pacific Rim Congress 42,205-223.
    Segre, P. N., F. Liu, P. Umbanhowar and D. A. Weitz, (2001). "An effective gravitational temperature for sedimentation." Nature 409(6820): 594-597
    Sheremet, A. and G. W. Stone (2003). Observations of nearshore wave dissipation over muddy sea beds. Journal of Geophysical Research-Oceans 108(C11).
    Son, M., and T. J. Hsu (2009), The effect of variable yield strength and variable fractal dimension on flocculation of cohesive sediment, Water Research, 43(14), 3582-3592.
    Safak, I, A. Sheremet, M.A. Allison, and T.-J. Hsu (2010). Bottom turbulence on the muddy Atchafalaya Shelf, Louisiana, USA, J. Geophys. Res., 115, C12019, doi:10.1029/2010JC006157.
    Soltanpour, M. and F. Samsami (2011). A comparative study on the rheology and wave dissipation of kaolinite and natural Hendijan Coast mud, the Persian Gulf. Ocean Dynamics 61(2-3): 295-309.
    Toorman, E. A. (1997). Modelling the thixotropic behaviour of dense cohesive sediment suspensions. Rheologica Acta 36(1): 56-65.
    Traykovski, P., Geyer, W. R., Irish, J. D. & Lynch, J. F. 2000 The role of wave-induced fluid mud flows for cross-shelf transport on the Eel River continental shelf. Cont. Shelf Res. 20, 2113–2140.
    Thorne, P.D., (1993). Analysis of acoustic measurements of suspended sediments. Journal of Geophysical Research 98, 899–910.
    Thorne, P. D., and D. M. Hanes (2002), A review of acoustic measurement of small-scale sediment processes, Continental Shelf Research, 22(4), 603-632.
    Trancoso, A.R., Saraiva, S., Fernandes, L., Pina, P., Leit˜ao, P., and Neves, R. (2005).“Modelling macroalgae using a 3D hydrodynamic-ecological model in a shallow,temperate estuary.” J. Ecological Modelling, 187, 232–246.
    Traykovski, P., P. Wiberg, and W. R. Geyer (2007), Observations and modeling of wave-supported sediment gravity flows on the Po prodelta and comparison to prior observations from the Eel shelf, Cont. Shelf Res., 27, 375– 399, doi:10.1016/j.csr.2005.07.008.
    Torres‐Freyermuth, A., and T.‐J. Hsu (2010), On the dynamics of wave‐mud interaction: A numerical study, J. Geophys. Res., 115, C07014, doi:10.1029/2009JC005552.
    Tahvildari, N., and Kaihatu, J.M. (2011). Optimized determination of viscous mud properties using a nonlinear wave-mud interaction model. Journal of Atmospheric and Oceanic Technology, doi:10.1175/JTECH-D-11-00025.1.
    Van Leussen, W. (1994), Estuarine macroflocs and their role in fine-grained sediment transport, PhD thesis, University of Utrecht.
    Van Olphen, H. & Fripiat, J.J., (1979), Data handbook for clay materials and other non-metallic minerals, Pergamon Press Inc.
    Vinzon, S. B., and A. J. Mehta (1998), Mechanism for formation of luctocline by waves, J. Waterw. Port Coastal Ocean Eng., 124(3), 147–149.

    Vinzon, S. B. ; Winterwerp, H. ; Nogueira, R. ; De Boer, G. (2009) Mud deposit formation on the open coast of the larger Patos Lagoon–Cassino Beach system. Continental Shelf Research, Volume 29(3), 572-588.
    Worrall WE, Tuliani S (1964) Viscosity changes during the ageing of clay-water suspensions. Trans Brit Ceramic Soc 63:167-185
    Wells, J., and J. Coleman (1981), Physical processes and fine-grained sediment dynamics, coast of Surinam, South-America, J. Sediment. Petrol., 51, 1053– 1068.
    Wells, J. T., Dynamics of coastal fluid muds in low-, moderate, and high-tide-range environments(1983), Can. J. Fish. Aqua. Sci. 40, 130-142.
    Waggoner, R. A., F. D. Blum, and J. M. D. Macelroy (1993), Dependence of the solvent diffusion-coefficient on concentration in polymer-solutions, Macromolecules, 26(25), 6841-6848.
    Wett, B. (2002), A straight interpretation of the solids flux theory for a three-layer sedimentation model, Water Research, 36(12), 2949-2958.
    Winterwerp, J. C. (1998), A simple model for turbulence induced flocculation of cohesive sediments, J. Hydraul. Res., 36(3), 309–326.
    Winterwerp (2002), On the flocculation and settling velocity of estuarine mud, Continental Shelf Research.
    Winterwerp, J. C., and W. G. M. van Kesteren (2004), Introduction to the Physics of Cohesive Sediment in Marine Environment, Amsterdam, Elsevier, New York.
    Winterwerp,J.C.,deGraaff,R.F.,Groeneweg,J.,Luyendijk,A.P., (2007), Modelling of wave damping at Guyana mud coast. Coastal Engineering54, 249–261.
    Yamamoto, T., H. L. Koning, H. Sellmeijer, and E. V. Hijum (1978), On the response of a poro‐elastic bed to water waves, J. Fluid Mech., 87(1), 193–206.
    Zhao, Z. D., J. J. Lian and John Z.S., (2006). Interactions among waves, current, and mud: Numerical and laboratory studies. Advances in Water Resources 29(11): 1731-1744.

    下載圖示 校內:2013-12-07公開
    校外:立即公開
    QR CODE