簡易檢索 / 詳目顯示

研究生: 顏伯丞
Yen, Bo-Cheng
論文名稱: 使用TCAD模擬閾值電壓工程隨機變異性研究:應用於Nanosheet MOSFET與6T-SRAM
TCAD-Based Random Variability Study on Threshold Voltage Engineering for Nanosheet MOSFET and 6T-SRAM Application
指導教授: 江孟學
Chiang, Meng-Hsueh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 51
中文關鍵詞: 靜態隨機存取記憶體介面偶極工程TCAD 全包覆式奈米片電晶體功函數變異
外文關鍵詞: SRAM, Interface dipole engineering, TCAD , GAA Nanosheet transistor, Workfunction variation
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Abstract II 致謝 III Table of Contents IV List of figures VI List of Table VIII Chapter 1 Introduction 1 1.1 Background and Motivations 1 Chapter 2 Fundamental Theorem 3 2.1 Multi-Vt engineering for Nanosheet MOSFET 3 2.1.1 Volumeless Multi-Vt in Nanosheet 4 2.1.2 Mechanism of interface dipole engineering 5 2.2 Random variation sources 7 2.2.1 Gate Workfunction Variation (WFV) 7 2.2.2 Random Dipole Fluctuation-Induced Variation (DFV) 8 2.3 6T-SRAM 9 2.3.1 Read 10 2.3.2 Write 10 2.3.3 A Compact Model to estimate SRAM Yield 11 2.4 Simulator Calibrations 16 2.5 Impedance Field Method (IFM) 17 2.6 Random Dipole Fluctuation-Induced Variation Method 18 Chapter 3 Single device variation 20 3.1 Nanosheet Device Structure (High performance) 20 3.1.1 HP Single device Vt variation by WFV 22 3.1.2 Single device Vt variation by Dipole 23 3.1.3 Single device Vt variation by Dipole+WFV 25 3.2 Nanosheet Device Structure (Low Power) 27 3.2.1 LP Single device Vt variation 27 Chapter 4 SRAM Design and yield analysis 29 4.1 High density SRAM composed by HP device 29 4.1.1 SRAM Yield analysis 29 4.1.2 SRAM Yield Optimization 32 4.2 LP Single device Vt variation 35 4.2.1 SRAM Analysis 35 4.2.2 LP SRAM Yield analysis 35 4.2.3 SRAM Yield Optimization 36 Chapter 5 Conclusion 39 References 40

    [1] R. Bao et al., "Selective Enablement of Dual Dipoles for near Bandedge Multi-Vt Solution in High Performance FinFET and Nanosheet Technologies," in 2020 IEEE Symposium on VLSI Technology, 16-19 June 2020 2020, pp. 1-2, doi: 10.1109/VLSITechnology18217.2020.9265010.
    [2] R. Bao et al., "Multiple-Vt Solutions in Nanosheet Technology for High Performance and Low Power Applications," in 2019 IEEE International Electron Devices Meeting (IEDM), 7-11 Dec. 2019 2019, pp. 11.2.1-11.2.4, doi: 10.1109/IEDM19573.2019.8993480.
    [3] R. Bao et al., "Extendable and Manufacturable Volume-less Multi-Vt Solution for 7nm Technology Node and Beyond," in 2018 IEEE International Electron Devices Meeting (IEDM), 1-5 Dec. 2018 2018, pp. 28.5.1-28.5.4, doi: 10.1109/IEDM.2018.8614518.
    [4] C. Suarez-Segovia, C. Leroux, F. Domengie, and G. Ghibaudo, "Quantitative Analysis of La and Al Additives Role on Dipole Magnitude Inducing Vt Shift in High-K/Metal Gate Stack," IEEE Electron Device Letters, vol. 38, no. 3, pp. 379-382, 2017, doi: 10.1109/LED.2017.2651644.
    [5] J. Yao et al., "Record 7(N)+7(P) Multiple VTs Demonstration on GAA Si Nanosheet n/pFETs using WFM-Less Direct Interfacial La/Al-Dipole Technique," presented at the 2022 International Electron Devices Meeting (IEDM), 2022.
    [6] L. Lin and J. Robertson, "Atomic mechanism of electric dipole formed at high-K: SiO2 interface," Journal of Applied Physics, vol. 109, no. 9, p. 094502, 2011, doi: 10.1063/1.3583655.
    [7] K. Kita and A. Toriumi, "Origin of electric dipoles formed at high-k/SiO2 interface," Applied Physics Letters, vol. 94, no. 13, p. 132902, 2009, doi: 10.1063/1.3110968.
    [8] H. Dadgour, K. Endo, V. De, and K. Banerjee, "Modeling and analysis of grain-orientation effects in emerging metal-gate devices and implications for SRAM reliability," in 2008 IEEE International Electron Devices Meeting, 2008: IEEE, pp. 1-4.
    [9] H. F. Dadgour, K. Endo, V. K. De, and K. Banerjee, "Grain-Orientation Induced Work Function Variation in Nanoscale Metal-Gate Transistors—Part II: Implications for Process, Device, and Circuit Design," IEEE Transactions on Electron Devices, vol. 57, no. 10, pp. 2515-2525, 2010, doi: 10.1109/ted.2010.2063270.
    [10] S. P. M. Jawar Singh , Dhiraj K.Pradhan, Robust SRAM Designs and Analysis. 2013.
    [11] A. E. Carlson, "Device and Circuit Techniques for Reducing Variation in Nanoscale SRAM," Engineering - Electrical Engineering and Computer Sciences, UNIVERSITY OF CALIFORNIA, BERKELEY, 2008.
    [12] B. H. Calhoun and A. P. Chandrakasan, "Static noise margin variation for sub-threshold SRAM in 65-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 41, no. 7, pp. 1673-1679, 2006, doi: 10.1109/JSSC.2006.873215.
    [13] A. D. Gaidhane, R. Saligram, W. Chakraborty, S. Datta, A. Raychowdhury, and Y. Cao, "Design Exploration of 14 nm FinFET for Energy-Efficient Cryogenic Computing," IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 9, no. 2, pp. 108-115, 2023, doi: 10.1109/JXCDC.2023.3330767.
    [14] E. L. K. El Sayed, and A. Wettstein, "Modeling Statistical Variability with the Impedance Field Method," presented at the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2012.
    [15] Sentaurus User Guide, 2023.
    [16] D. Zheng, W. Chung, Z. Chen, M. Si, C. Wilk, and P. D. Ye, "Controlling Threshold Voltage of CMOS SOI Nanowire FETs With Sub-1 nm Dipole Layers Formed by Atomic Layer Deposition," IEEE Transactions on Electron Devices, vol. 69, no. 2, pp. 851-856, 2022, doi: 10.1109/TED.2021.3136493.
    [17] Y. Zhao et al., "Impact of Random Dipole Fluctuation-Induced Variation on Nanosheet Devices," IEEE Electron Device Letters, vol. 44, no. 10, pp. 1772-1775, 2023, doi: 10.1109/led.2023.3309694.
    [18] Z. Xu et al., "Impact of Lanthanum-Induced Dipoles on the Tunneling and Dielectric Properties of Gate-Stack," IEEE Transactions on Electron Devices, vol. 70, no. 4, pp. 1589-1594, 2023, doi: 10.1109/TED.2023.3246435.
    [19] "International Roadmap for Devices and Systems (IRDS™) 2023 Update." https://irds.ieee.org/editions/2023 (accessed.
    [20] H. Arimura et al., "Molybdenum Nitride as a Scalable and Thermally Stable pWFM for CFET," in 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 11-16 June 2023 2023, pp. 1-2, doi: 10.23919/VLSITechnologyandCir57934.2023.10185430.
    [21] Z. Xiao et al., "Physical model of the impact of metal grain work function variability on emerging dual metal gate MOSFETs and its implication for SRAM reliability," in 2009 IEEE International Electron Devices Meeting (IEDM), 7-9 Dec. 2009 2009, pp. 1-4, doi: 10.1109/IEDM.2009.5424420.

    無法下載圖示 校內:2030-07-18公開
    校外:2030-07-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE