| 研究生: |
李庭佑 Li, Ting-You |
|---|---|
| 論文名稱: |
以模組化多階轉換器為基礎之多饋入式高壓直流輸電系統連接再生能源之穩定度改善分析 Stability-improvement Analysis of a Modular Multilevel Converter-based Multi-Infeed High-Voltage Direct-Current Transmission System Connected with Renewable Energy |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 179 |
| 中文關鍵詞: | 模組化多階轉換器 、多饋入式高壓直流輸電系統 、離岸風場 、海洋溫差發電系統 、阻尼控制器 、穩定度 |
| 外文關鍵詞: | Modular multi-level converters, multi-infeed high-voltage direct current, offshore wind farm, ocean thermal energy conversion, damping controllers, stability |
| 相關次數: | 點閱:103 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究基於模組化多階轉換器之多饋入式高壓直流輸電系統,整合了離岸風場以及海洋溫差發電系統併入電網之穩定度改善分析。本論文前半部於不同工作條件下,探討所研究系統之小訊號穩定度分析,後半部則針對系統中低頻振盪模態,提出了模組化多階轉換器之阻尼控制器,即比例-積分-微分以及超前-落後型式之阻尼控制器。藉由頻域分析方法,評估所設計控制器參數之有效性,再將控制器代入非線性系統中,以動暫態等時域模擬方法驗證控制器在系統遭遇各種干擾時之性能。文中對控制器在改善系統穩定度、輸出波形以及增加阻尼特性等方面,均有進行比較。由模擬結果得知,比例-積分-微分型式之控制器對於輸出波形具有最佳的改善效果。本論文同時也探討實際風場之風速加入所研究系統,以分析長時間之系統動態特性。
This thesis investigates stability-improvement analysis of multi-infeed high-voltage direct current transmission systems based on modular multi-level converters, integrating offshore wind farms and ocean thermal energy conversion systems into the grid. The first half of this thesis examines the studied system's small-signal stability analysis under various operating conditions. The latter half proposes damping controllers for low-frequency oscillation modes in the system, namely proportional-integral-derivative (PID) and lead-lag controllers based on modular multi-level converters. Through frequency domain analysis methods, the effectiveness of the designed controller parameters is evaluated. This is followed by validating the controller's performance under various disturbances using time-domain simulation methods in nonlinear systems. Comparative studies are conducted on the controllers to improve system stability, and output waveforms, and enhance damping characteristics. Simulation results indicate that the PID controller shows the most significant improvement in the output waveform. This thesis also explores the incorporation of actual wind speeds from real wind farms into the studied system to analyze its long-term dynamic characteristics.
[1] M. Bolinger and G. Bolinger, “Land requirements for utility-scale PV: An empirical update on power and energy density,” IEEE Journal of Photovoltaics, vol. 12, no. 2, pp. 589-594, Mar. 2022.
[2] K. R. Padiyar, HVDC Power Transmission Systems, 2nd ed. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2021.
[3] P. S. Kundur and O. P. Malik, Power System Stability and Control, 2nd ed. New York, NY, USA: McGraw-Hill, 2022.
[4] S. D. Joshi, M. B. Ghat, A. Shukla, and M. C. Chandorkar, “Improved balancing and sensing of submodule capacitor voltages in modular multilevel converter,” IEEE Trans. Industry Applications, vol. 57, no. 1, pp. 537-548, Jan.-Feb. 2021.
[5] Y. Sun, L. Han, B. Li, Z. Xu, S. Zhou, and D. Xu, “A hybrid modular multilevel converter comprising si submodules and sic submodules with its specialized capacitor voltage balancing strategy,” in Proc. 2022 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Haining, China, Oct. 28-31, 2022, pp. 1-6.
[6] S. Lu, L. Yuan, K. Li, and Z. Zhao, “An improved phase-shifted carrier modulation scheme for a hybrid modular multilevel converter,” IEEE Trans. Power Electronics, vol. 32, no. 1, pp. 81-97, Jan. 2017.
[7] Y. Wang, C. Zhao, and R. Iravani, ‘‘Small signal stability investigation of the MMC-HVDC grid,’’ IEEE Trans. Power Delivery, vol. 37, no. 5, pp. 4448-4459, Oct. 2022.
[8] Z. Zhang and X. Zhao, ‘‘Coordinated power oscillation damping from a VSC-HVDC grid integrated with offshore wind farms: Using capacitors energy,’’ IEEE Trans. Sustainable Energy, vol. 14, no. 2, pp. 751-762, Apr. 2023.
[9] Y. Zhu, J. Pou and G. Konstantinou, ‘‘Impedance shaping effects and stability assessment of circulating current control schemes in modular multilevel converters,’’ IEEE Trans. Power Delivery, vol. 38, no. 1, pp. 666-676, Feb. 2023.
[10] B. Zhang, X. Du, C. Du, J. Zhao, and F. Li, “Stability modeling of a three-terminal MMC-HVDC transmission system,” IEEE Trans. Power Delivery, vol. 37, no. 3, pp. 1754-1763, Jun. 2022.
[11] M. I. Hossain, W. M. Hamanah, M. S. Alam, M. Shafiullah, and M. A. Abido, ‘‘Fault ride through and intermittency improvement of renewable energy integrated MMC-HVDC system employing flywheel energy storage,’’ IEEE Access, vol. 11, pp. 50528-50546, May 2023.
[12] X. Li, Z. Xu, and Z. Zhang, ‘‘Application of MMC with embedded energy storage for overvoltage suppression and fault ride-through improvement in series LCC-MMC hybrid HVDC system,’’ Journal of Modern Power Systems and Clean Energy, vol. 11, no. 3, pp. 1001-1013, May 2023.
[13] H. R. A. Mohamed and Y. A. -R. I. Mohamed, ‘‘Assessment and mitigation of DC breaker impacts on VSC-MTDC grid equipped with power flow controller,’’ IEEE Open Journal of Power Electronics, vol. 4, pp. 237-251, Feb. 2023.
[14] G. Li, T. An, W. Liu, T. Joseph, M. Szechtman, B. R. Andersen, and Y. Lan ‘‘Power reversal strategies for hybrid LCC/MMC HVDC systems,’’ CSEE Journal of Power and Energy Systems, vol. 6, no. 1, pp. 203-212, Mar. 2020.
[15] Y. Wang, C. Zhao, C. Guo, and A. U. Rehman, ‘‘Dynamics and small signal stability analysis of PMSG-based wind farm with an MMC-HVDC system,’’ CSEE Journal of Power and Energy Systems, vol. 6, no. 1, pp. 226-235, Mar. 2020.
[16] L. Gao, J. Lyu, and X. Cai, ‘‘Mechanism analysis of mid-frequency oscillation in a practical MMC-HVDC system for offshore wind farms,’’ in Proc. 2022 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Guangzhou, Guangdong, China, Nov. 04-07, 2022, pp. 678-683.
[17] 林裕涵,同步發電機採用以模組化多階轉換器為基礎之高壓直流鏈連接至電網之穩定度分析,國立成功大學電機工程學系碩士論文,2023年7月。
[18] S. Guo, B. Zhou, K. W. Chan, S. Bu, C. Li, N. Liu, and C. Zhang ‘‘Optimal Offering Strategy of Virtual power plant with hybrid renewable ocean energy portfolio,’’ CSEE Journal of Power and Energy Systems, vol. 9, no. 6, pp. 2040-2051, Nov. 2023.
[19] A. Lim, Y. R. Kim, Y. C. Kim, S. H. Song, J. Y. Choi, J. B. Seo, J. H. Moon, and H. J. Kim, “Dynamic simulation of pacific island microgrid with integrated 1MW OTEC plant,” in Proc 2023 11th International Conference on Power Electronics and ECCE Asia (ICPE 2023 - ECCE Asia), Jeju Island, Korea, May 22-25, 2023, pp. 1966-1972.
[20] R. Datta and Y. H. Joo, “Fuzzy memory sampled-data controller design for PMSG-based WECS with stochastic packet dropouts,” IEEE Trans. Fuzzy Systems, vol. 31, no. 12, pp. 4421-4434, Dec. 2023.
[21] K. A. Singh, A. Chaudhary, and K. Chaudhary, “Three-phase AC-DC converter for direct-drive PMSG-based wind energy conversion system,” Journal of Modern Power Systems and Clean Energy, vol. 11, no. 2, pp. 589-598, Mar. 2023.
[22] S. Heier, Grid Integration of Wind Energy Conversion Systems, Chichester, UK: John Wiley & Son, 2014.
[23] D. Saidani, O. Hasnaoui, and R. Dhifaoui, “Control of double fed induction generator in WECS,” in Proc. The 2nd International Conference on Power Engineering and Renewable Energy (ICPERE), Bali, Indonesia, Dec. 9-11, 2014, pp. 25-30.
[24] 武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年7月。
[25] H. Liang, Z. He, J. Guo, X. Wang, Z. Lin, and L. Zhang, “Mass-spring-damping-based tissue deformation modeling for robotic acupuncture,” in Proc 2023 International Annual Conference on Complex Systems and Intelligent Science (CSIS-IAC), Shenzhen, China, Oct. 20-22 2023, pp. 647-652.
[26] G. Huang et al., “Novel black start control strategy with power boundary analysis for PMSG-based wind turbines,” IEEE Trans. Sustainable Energy, vol. 15, no. 2, pp. 1224-1238, Apr. 2024.
[27] M. K. K. Prince, M. T. Arif, A. Gargoom, A. M. T. Oo, and M. E. Haque, “Modeling, parameter measurement, and control of PMSG-based grid-connected wind energy conversion system,” Journal of Modern Power Systems and Clean Energy, vol. 9, no. 5, pp. 1054-1065, Sep. 2021.
[28] 黃宸斌,太陽集熱型海洋溫差發電系統之特性分析,國立成功大學電機工程學系碩士論文,2009年7月。
[29] A. Kazemian, Y. basati, M. Khatibi, and T. Ma, “Performance prediction and optimization of a photovoltaic thermal system integrated with phase change material using response surface method,” Journal of Cleaner Production, vol. 290, pp. 1-17, Mar. 2021.
[30] V. Vittal, J. D. McCalley, P. M. Anderson, and A. A. Fouad, Power System Control and Stability, 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2019.
[31] P. C. Krause, Analysis of Electric Machinery, Chapters 5 & 7, New York: McGraw-Hill, Inc., 1986.
[32] IEEE, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, IEEE Standard 421.5-2016, Aug. 2016.
[33] 中央氣象局觀測資料查詢系統。[Online]. Available: https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp, retrieved date: May. 1, 2020.
校內:2029-06-27公開