簡易檢索 / 詳目顯示

研究生: 張學鴻
Cheong, Hok-Hong
論文名稱: 再生瀝青混凝土之性質評估
Evaluation of Characteristics of Recycled Asphalt Pavement (RAP) Mixtures
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 199
中文關鍵詞: 流變試驗疲勞性質工程性質黑石頭軟化劑再生劑擴散速率擴散作用
外文關鍵詞: diffusion, diffusion rate, recycling agents, softening agents, black rock, construction property, fatigue property, DSR
相關次數: 點閱:169下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   各項建築工程的完成,都必須開採大量的砂石,造成河川生態和周圍環境的影響。而道路工程所使用的瀝青混凝土具有可回收再利的特性,可減少河川砂石的開採和工程廢棄物的堆積,符合綠色環保。由國內外的研究指出回收料的添加可提升瀝青混凝土的工程性質,增加鋪面績效。
      本研究採用老化程度較高的回收料作為再再生瀝青混凝土,使用AI之再生瀝青混凝土配合設計製作試體,以不同含量(0%、20%、40%、60%、80%)之回收料(RAP)和固定混合物黏度2000 poises評估添加不同種類的軟化劑和再生劑對再生瀝青混凝土各方面的影響,進行間接張力試驗、浸水剝脫試驗後的殘餘強度試驗、孔隙率試驗、Cantabro磨耗試驗和疲勞試驗,並探討各種再生瀝青混凝土於不同擴散天數之性質變化,最後針對回收料添加再生劑拌合鬆料以瀝青分層萃取回收作黏度和流變試驗,用以評估再生瀝青混凝土的擴散過程,使再生瀝青混凝土的評估更完善。
      在混合料的孔隙率和比重試驗方面,可知回收料含量越高和添加劑的黏度越低,試體的孔隙率越低,而試體的比重則越高。在間接張力和殘餘強度試驗方面,回收料含量越高,試體的能量損失率越高,而其殘餘強度比值則越低,顯示回收料的添加使瀝青混凝土的抗水侵害能力較新料低。然而,回收料的添加可增加試體的強度,雖然水侵害損失的強度較新料高,但整體而言,再生瀝青混凝土的間接張力強度和泡水後的殘餘強度都較新料的高,顯示回收料可提升鋪面的間接張力和抗水侵害能力。而添加劑方面,以AC-10和RA-75的強度較高,而AC-5的添加明顯產生黑石頭情況,降低了再生瀝青混凝土的強度。其中以添加重油之黑石頭情況最為明顯,其拌合之試體強度幾乎為0,破壞時如砂一樣鬆散。
      在鬆弛試驗方面,再生劑的鬆弛效果較軟化劑好,與新鮮料接近。在反覆載重試驗方面,就拌合黏度2000 poises而言,AC-20:RA-75(RAP40% 15天):AC-10(RAP40%):AC-5(RAP40%)的疲勞壽命比為100:90:57:32,顯示再生劑有效減少疲勞裂縫或破壞,使其疲勞壽命與新料接近,而軟化劑方面,以AC-10的疲勞性質較好。在癒合效應試驗方面,由於AC-5的黏度較低,使其試體的癒合效果較好,但其勁度損失率較新鮮料高。
      在不同擴散天數(1、5、10、15、30、60天)方面,試體的間接張力強度、疲勞壽命、磨損率、不同瀝青層的黏度和DSR各項值都隨著擴散天數增加而改變。其中以再生劑的擴散效果最為明顯,於第10天強度明顯減少,而疲勞壽命則增加50%,到第15天的強度慢慢回復,而疲勞壽命沒有明顯繼續增加的趨勢,因此,評估再生瀝青混凝土的主要擴散天數為15天,於這段時間應避免鋪面受過大的載重影響。
      綜合以上試驗結果,建議再生瀝青混凝土添加的軟化劑以AC-10為最佳,而AC-5與重油則不建議使用。而為了提高再生瀝青混凝土各方面的效果與新鮮料接近,應添加再生劑。

      Asphalt concrete pavements can be recycled to reduce exploitation of river sandstone and waste of engineering, accordance with green environmental protection. Domestic and international research showed the use of recycled asphalt pavement (RAP) can improve the construction property of asphalt concrete and promote the performance of pavement.
      In this study, the high level aged RAP was chosen to compacted the specimens about various content (0%, 20%, 40%, 60%, 80%) of RAP and the viscosity of mixture was controlled at 2000 poises in accordance with the mixture design was suggested by AI. The recycled asphalt concrete (RAC) mixed with recycling agents (RA) and softening agents (SA) was characterized in terms of IDT test, resistance to moisture induced damage test, air voids test, Cantabro test and fatigue test. And the results of these tests were compared to these of virgin mixtures. Finally, the compacted and loose specimens were curing at various days to examine the diffusion effect. The mastic of mixture, which was obtained by means of staged extraction, was used to determine the diffusion process that how much recycling agents was diffused into aged asphalt coating RAP aggregates.
      The strength test results presented that use of RAP could reinforce the indirect tension strength and retained strength of the mixtures. And the strength of mixtures mixed with AC-10 or RA-75 were higher than other additive agents. The fatigue test results presented that use of recycling agents could reduce fatigue crack and improve the fatigue life of RAC. The diffusion test results presented that the main diffusion process occurred during 15 days and it is necessary to prevent the pavement from heavy load in this period.

    摘要 I ABSTRACT III 誌謝 IV 目錄 V 縮寫目錄 XI 表目錄 XIII 圖目錄 XV 第一章 緒論 1-1 1.1 前言 1-1 1.2 研究動機 1-3 1.3 研究目的 1-3 1.4 研究範圍 1-4 第二章 文獻回顧 2-1 2.1 瀝青材料及瀝青混凝土 2-1 2.2 熱拌再生瀝青混凝土 2-1 2.2.1 回收瀝青混凝土 2-1 2.2.2 RAP的黏結料性質 2-2 2.2.3 RAP的粒料性質 2-3 2.2.4 RAP的變異性 2-3 2.2.5 RAP的黑石頭行為 2-5 2.2.6 RAP混合物的影響 2-6 2.2.7 RAP的工程性質 2-7 2.3 再生熱拌瀝青混凝土配合設計 2-8 2.3.1 再生劑及軟化劑 2-12 2.3.2 再生劑規範及添加量 2-12 2.3.2.1 再生劑的擴散作用 2-14 2.3.2.2 再生瀝青混凝土之擴散理論 2-17 2.3.3 軟化劑規範及添加量 2-18 2.4 水侵害產生之機制 2-19 2.4.1 老化現象與水侵害之關係 2-20 2.5 瀝青混凝土之裂縫成長評估 2-20 2.5.1 間接張力試驗試驗 2-20 2.5.2 動態力學分析 2-22 2.5.3應變率單軸拉伸試驗 2-23 2.5.4 疲勞壽命 2-24 2.5.5 癒合效應 2-26 2.6 瀝青混凝土之疲勞預測模式 2-26 2.6.1 彈性體之破壞模式 2-26 2.6.2 黏彈性體之破壞模式 2-27 2.6.3 瀝青混凝土損壞發展模式 2-28 第三章 研究計畫 3-1 3.1 試驗範圍 3-1 3.2 研究流程 3-2 3.3 試驗材料 3-3 3.3.1 瀝青膠泥 3-3 3.3.2 再生劑與軟化劑 3-3 3.3.3 粒料與級配 3-3 3.3.4 填充料 3-4 3.4 粒料基本物性試驗 3-4 3.4.1 比重及吸水率試驗 3-4 3.4.2 洛杉磯磨損試驗 3-4 3.5 瀝青膠泥基本物性實驗 3-5 3.5.1 針入度試驗 3-5 3.5.2 黏度試驗 3-5 3.5.3動剪流變儀(Dynamic Shear Rheometer,DSR) 3-6 3.6 瀝青混凝土試驗 3-7 3.6.1 密級配瀝青混凝土配合設計試驗 3-7 3.6.1.1 穩定值、流度值試驗 3-7 3.6.2 間接張力試驗 3-8 3.6.3 殘餘強度試驗 3-9 3.6.3.1 浸水剝脫試驗 3-9 3.6.3.2 吸收能(Absorbed Energy) 3-10 3.6.3.3能量損失 3-11 3.6.4 Cantabro磨耗試驗 3-12 3.6.5 疲勞試驗 3-12 3.6.5.1 試驗儀器 3-12 3.6.5.2 鬆弛模數試驗 3-13 3.6.5.3控制應變率試驗 3-14 3.6.5.4癒合試驗 3-15 3.7 瀝青分層回收試驗 3-15 3.8 瀝青薄膜厚度之計算方法 3-16 第四章 試驗結果分析與討論 4-1 4.1瀝青混凝土配合設計結果 4-1 4.1.1 瀝青黏結料物性試驗 4-1 4.1.2 粒料物性試驗 4-2 4.1.3 再生瀝青混凝土配合設計 4-2 4.1.3.1 再生瀝青混凝土配合設計結果 4-3 4.2 間接張力強度試驗 4-9 4.2.1 間接張力強度結果 4-9 4.2.2 不同添加劑的黏度與強度之關係 4-14 4.3 殘餘強度試驗 4-17 4.3.1 浸水剝脫試驗 4-17 4.3.2 吸收能及能量損失 4-20 4.4 疲勞試驗 4-23 4.4.1鬆弛模數試驗 4-23 4.4.2 再生瀝青混凝土之疲勞壽命 4-27 4.4.3 癒合效應 4-46 4.4.3.1 癒合指標 4-51 4.4.3.2 破壞率 4-54 4.5 擴散作用 4-58 4.5.1 間接張力試驗結果 4-59 4.5.2 疲勞試驗結果 4-62 4.5.3 Cantabro磨耗試驗結果 4-64 4.5.4 黏結料試驗 4-66 4.5.4.1 黏度試驗結果 4-66 4.5.4.2 DSR試驗結果 4-68 4.5.4.2.1回收料與回收料添加再生劑之流變參數G* 4-68 4.5.4.2.2 回收料與回收料添加再生劑之損失正切(tan δ) 4-71 4.5.4.2.3 再生瀝青混凝土擴散時之G*和tan δ變化 4-74 4.5.4.2.4 再生瀝青混凝土流變參數與績效之關係 4-75 4.5.4.3 擴散速率及擴散模式 4-77 4.5.4.4 擴散速率結果 4-79 4.5.5 擴散試驗綜合結果 4-86 第五章 結論與建議 5-1 5.1 結論 5-1 5.2 建議 5-3 CONCLUSIONS 5-5 參考文獻 附錄

    中華鋪面工程學會,「近代新瀝青混凝土路面材料及產製鋪設技術」,2004。

    林晉哲,「添加不同再生料含量對瀝青混凝土之影響」,碩士論文,國立成功大學土木研究所,台南,2004。

    楊翔詠,「水侵害對不同級配種類瀝青混凝土的影響」,碩士論文,國立成功大學土木研究所,台南,2000。

    蔡攀鰲,「再生瀝青混凝土拌合廠審查認可基準」,再生瀝青混凝土實務講習,中華鋪面工程學會,台南,第1-19頁,2002。

    蔡攀鰲,「瀝青鋪面材料再利用之研究」,土木水利,第六卷,第一期,第49-58頁,1979。

    Bonnaure, F.P., Huibers, A.H. and Boonders, A., “A Laboratory Investigation of The Influence of Rest Periods on The Fatigue Characteristics of Bituminous Mixes,” Journal of the Association of Asphalt Paving Technologists, Vol. 51, pp.104~128 (1982).

    Carpenter, S.H. and Wolosick, J.R., “Modifier Influence in the Characterization of Hot-Mix Recycled Material,” Transportation Research Record 777, pp.15~22 (1980).

    Crank, J., “The Mathematics of Diffusion,” Oxford University Press, London (1956).

    Gardiner, M.S. and Wagner, C., “Use of Reclaimed Asphalt Pavement in Superpave Hot-Mix Asphalt Application,” Transportation Research Record 1681, pp.1~9 (1999).

    Hadipour, K. and Anderson, K.O., “An Evaluation of Permanent Deformation and Low Temperature Characteristics of Some Recycled Asphalt Concrete Mixtures,” Journal of the Association of Asphalt Paving Technologists, Vol. 57, pp.615~645 (1988).

    Huang, B., Kingery, W. and Zhang, Z., “Laboratory Study of Fatigue Characteristics of HMA Mixtures Containing RAP,” International Symposium on Long Performing Asphalt Pavements, Auburn, Alabama (2004).

    Huang, B., Zhang, Z. and Kinger, W., “Fatigue Crack Characteristics of HMA Mixtures Containing RAP,” Proceeding, 5th International RILEM Conference on Cracking in Pavements, Limoges, France, pp. 631 – 638 (2004).

    Huang, B., Li, G., Vukosavljevic, D., Shu, X. and Egan, B.K., “Laboratory Investigation of Mixing HMA with RAP,” TRB 2004 Annual Meeting CD-ROM (2005).

    Kandhal, P.S., Rao, S.S., Watson, D.E. and Young, B., “Performance of Recycled Hot Mix Asphalt Mixtures,” NCAT Report No.95-1 (1995).

    Karlsson, R. and Isacsson, U., “Investigations on Bitumen Rejuvenator Diffusion and Structural Stability,” Association of Asphalt Paving Technologists 2003 Annual Meeting CD-ROM.

    Kim, Y.R., D. N. Little, and R. L. Lytton, “Use of Dynamic Mechanical Analysis (DMA) to Evaluate the Fatigue and Healing Potential of Asphalt Binders in Sand Asphalt Mixtures,” Journal of Association of Asphalt Paving Technologists, pp.176~206 (2002).

    Kingery, W.R., Zhang, Z. and Zuo, G., “Laboratory Study of Fatigue Characteristics of HMA Surface Mixtures Contining RAP,” TRB 2004 Annual Meeting CD-ROM (2004).

    Lee, H.J., Daniel, J.S. and Kim, Y.R., “Continuum Damage Mechanics-Based Fatigue Model of Asphalt Concrete,” Journal of Materials in Civil Engineering, Vol.12, No.2, pp.105~112 (2002).
    National Cooperative Highway Research Program (NCHRP), “Recommended Use of Reclaimed Asphalt Pavement in the Superpave Mix Design Method: Guidelines,” Research Results Digest – Number 253 (2001).

    Noureldin, A.S. and Wood, L.E., “Rejuvenator Diffusion in Binder Film for Hot-Mix Recycled Asphalt Pavement,” Transportation Research Record 1115, pp.51~61 (1987).

    Park, S. W., Kim, Y. R. and Schapery, R. A., “A Viscoelastic Continuum Damage Model and Its Application to Uniaxial Behavior of Asphalt Concrete,” Mechanics of Materials, Vol. 24, pp.241~255, 1996.

    Peterson, G.D., Davison, R.R., Glover, C.J. and Bullin, J.A., “Effect of Composition on Asphalt Recycling Agent Performance,” Transportation Research Record 1436, pp.38~46 (1994).

    Roberts, F.L., Kandhal, P.S., Brown, E., Lee, D.Y. and Kennedy, T.W., Hot Mix Asphalt Materials Mixture Design, And Construction, NAPA Education Foundation, Second Edition, Lanham, Maryland (1996).

    Roberts, K. and Ulf, I., “Application of FTIR-ATR to Characterization of Bitumen Rejuvenator Diffusion,” Journal of Materials in Civil Engineering, Vol.15, pp.157-165 (2003).

    Safaf, C.L. and Majidzadeh, K., “Dynamic Response and Fatigue Characteristics of Asphalt Mixture,” American Society for Testing and Materials, STP 561, pp.95~114 (1974).

    Schapery, R. A., ”A Theory of Mechanical Behavior of Elastic Mediawith Growing Damage and Other Changes In Structure,” Journal of the Mechanics and Physics of Solids, Vol. 38, No. 2, pp.215~253 (1990).

    Siddiqui, M. N., Ali, M. F., Shirokoff, J., “Use of X-ray Diffraction in Assessing the Aging Pattern of Asphalt Fractions,” FUEL 81, pp51 ~ pp58 (2002).

    Solaimanian, M. and Tahmoressi, M., “Variability Analysis of Hot-Mix Asphalt Concrete Containing High Percentage of Reclaimed Asphalt Pavement,” Transportation Research Record 1543, pp.89~96 (1996).

    Soleymani, H.R., Anderson, M., McDaniel, R. and Abdelrahman, M., “Investigation of The Black Rock Issue for Recycled Asphalt Mixtures,” Journal of Association of Asphalt Paving Technologists, Vol. 69, pp.366~390 (2000).

    Sondag, M. S., Chadbourn, B. A. and Drescher, A., Investigation of Recycled Asphalt Pavement (RAP) Mixtures Final Report, Minnesota Department of Transportation, Virginia (2002).

    Taylor, N. H.,” Life Expectancy of Recycled Asphalt Paving,” Recycling of Bituminous Pavements, ASTM STP 662, L. E. Wood, Ed., American Society for Testing and Materials, pp.3~15(1978).

    Thompson, G., Determining Asphalt Content for Recycled Aspahlt Pavement(RAP) Materials, Federal Highway Administration Final Report, Project 304-221 (2003).

    Zhang, Z., R. Rouqe, and B. Birgisson, “Evaluation of Laboratory-Measured Crack Growth Rate for Asphalt Mixtures,” Transportation Research Record 1767, pp.67~75 (2001).

    下載圖示 校內:2006-06-17公開
    校外:2008-06-17公開
    QR CODE