簡易檢索 / 詳目顯示

研究生: 吳建昇
Wu, Jian-Sheng
論文名稱: 氧化鋅奈米柱氨氣感測器之研究
Investigation of ZnO nanorods-based NH3 gas sensor
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 115
中文關鍵詞: 氧化鋅奈米柱氨氣感測器水熱法
外文關鍵詞: zinc oxide, nanorod, ammonia, sensor
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,專家學者已經開發和研究出各種不同類型的氣體感測器。而自從金屬氧化物半導體與電阻式氣體感測器發表後,由於成熟的半導體製程技術,使得體積小、靈敏度高、可大量生產的半導體式氣體感測器逐漸成為發展之主流。
    本論文中所提出的感測元件是以氧化鋅為基材,利用水熱法成長氧化鋅奈米柱,並製作成電阻式氣體感測器,再分別針對不同的氣體,如氫氣、氨氣以及二氧化氮,去研究其感測與響應特性。
    首先,探討氧化鋅材料在不同生長條件下的所成長氧化鋅奈米柱的特性。在不同的水溶液濃度、種晶層厚度、水溶液pH值、和成長溫度下所成長的氧化鋅奈米柱也會有顯著的差異。再進一步探討各個條件下所成長氧化鋅奈米柱之表面型態特性,如:長度、直徑、長寬比和結晶面向之差異。
    其次,利用黃光微影及熱蒸鍍技術沉積指叉狀電極於藍寶石基板上並結合水熱法成長氧化鋅奈米柱,以製備電阻式氣體感測器。氧化鋅材料除了對氫氣擁有感測特性外,也具備檢測氨氣的能力。尤其在高溫時,元件呈現更短的響應時間與更高的感測靈敏度。
    接著研究氧化鋅奈米柱電阻式感測器在不同溫度及濃度下的二氧化氮感測特性,由於二氧化氮為氧化性氣體,吸附後會使得感測器之阻值上升。有鑑於此,我們改變氧化鋅奈米柱之成長條件以降低感測器之電阻,以利提升感測訊號之變化範圍。此外,較大的電流變化量也可使感測器較不易受到雜訊之干擾。
    最後,由實驗結果可知,藉由氧化鋅材料本身對氣體的有效的感測特性,加上奈米柱的高表面積和體積比,我們可以製備一高靈敏度之氣體感測器,未來也希望將此感測元件與微機電系統整合以製作多功能之智慧型感測器。

    Over the past decades, different types of gas sensors were developed. With the progress of the semiconductor fabrication technologies, semiconductor-based gas sensors with small size and high sensitivity have become the mainstream in the gas sensor community.
    The studied resistance-type gas sensors consisted of the zinc oxide (ZnO) material. ZnO material was employed for the gas sensors due to its advantages including wide direct band gap of 3.37 eV at room temperature, high mechanical and thermal stabilities and much larger free exciton binding energy of 60 meV. The studied devices are capable of monitoring different gases such as hydrogen, ammonia, and nitrogen dioxide.
    First, different growth conditions of zinc oxide material, such as precursor concentration, thickness of ZnO seed layer, pH value, and the growth temperature, were performed. The features of synthesized ZnO nanorods were investigated in terms of length, diameter, aspect ratio and crystallographic orientation.
    Second, the conventional photolithography and thermal evaporation were employed to produce the interdigitated electrodes on the substrate. ZnO nanorods can be selectively grown on the patterned substrate to form the ZnO nanorods-based gas sensors. It is known that ZnO material shows selectivity not only to hydrogen molecules but also to ammonia molecules. The studied device exhibited short response time and high sensitivity, especially at high temperatures.
    Finally, the nitrogen dioxide sensing characteristics of the ZnO nanorods-based gas sensors were studied and demonstrated. Based on the sensing mechanism of metal-oxide, the oxidizing gas can lead to the decrease of ZnO conductance. Therefore, in this research, the ZnO nanorods-based gas sensor was fabricated toward relatively low resistivity in order to increase the variation range of the sensing signal. In addition, sensors with large current variation exhibit larger margins to noise interference. Consequently, the ZnO nanorods-based gas sensor shows the potential for the integration of micro-electro-mechanical system (MEMS) application to develop and realize multifunctional smart sensors.

    Abstract .................................III Table Captions..............................XV Figure Captions.............................XVI Chapter 1 Introduction...............................1 1.1 Chemical Gas sensor.................................1 1.2 Zinc oxide.............................2 1.3 Gas Sensing Mechanism.......................3 1.3.1 Ammonia Sensing Mechanism..................3 1.3.2 Hydrogen Sensing Mechanism..................4 1.3.3 Nitrogen Dioxide Sensing Mechanism...............4 1.4 Summary.............................5 Chapter 2 Experimental Elaboration....................7 2.1 Device Preparation and Fabrication....................7 2.1.1 Device Structure........................7 2.1.2 Substrate Preparation......................7 2.1.3 Electrode deposition......................8 2.1.4 ZnO seed-layer deposition....................8 2.1.5 Growth of ZnO nanorods....................8 2.2 Material Characterization......................9 2.2.1 X-ray diffraction........................9 2.2.2 Scanning electron microscopy..................10 2.2.3 Transmission electron microscopy................10 2.3 Gas sensing measurement......................11 2.3.1 System setup.........................11 2.3.2 Gas-sensing experiments....................12 Chapter 3 Effects of growth conditions on the hydrothermal synthesized ZnO nanorods..........................14 3.1 Introduction.............................14 3.2 Experimental and results.......................15 3.2.1 Growth process and mechanism................15 3.2.2 Sputtering time.........................16 3.2.3 pH value............................17 3.2.4 Growth time..........................18 3.2.5 Zinc nitrate concentration....................18 3.2.6 Substrate pretreatment.....................19 3.2.7 Annealing of ZnO seed layer...................19 3.3 Results and discussion........................20 3.4 Summary.............................21 Chapter 4 Ammonia sensing properties of ZnO nanorods synthesized by hydrothermal method.....................23 4.1 Introduction...........................23 4.2 Device Fabrication.........................24 4.3 Results and Discussion.........................25 4.4 Summary.............................29 Chapter 5 Conclusion and Future works...................30 5.1. Conclusion.............................30 5.2. Future works..........................30 References................................32

    1. L. Tien, P. Sadik, D. Norton, L. Voss, S. Pearton, H. Wang, B. Kang, F. Ren, J. Jun, and J. Lin, "Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods," Applied Physics Letters, vol.87, pp. 222106. 2005.
    2. T. Yamaguchi, T. Kiwa, K. Tsukada, and K. Yokosawa, "Oxygen interference mechanism of platinum-FET hydrogen gas sensor," Sensors and Actuators A: Physical, vol.136(1), pp. 244-248. 2007.
    3. N. Ali, M. Hashim, and A. Aziz, "Effects of surface passivation in porous silicon as H2 gas sensor," Solid-State Electronics, vol.52(7), pp. 1071-1074. 2008.
    4. Y. Tsai, K. Lin, H. Chen, and I. Liu, "Transient response of a transistor-based hydrogen sensor," Sensors. Actuat. B-Chem., vol.134(2), pp. 750-754. 2008.
    5. X. Wang, X. Wang, C. Feng, C. Yang, B. Wang, J. Ran, H. Xiao, C. Wang, and J. Wang, "Hydrogen sensors based on AlGaN/AlN/GaN HEMT," Microelectronics Journal, vol.39(1), pp. 20-23. 2008.
    6. A. Foucaran, F. Pascal-Delannoy, A. Giani, A. Sackda, P. Combette, and A. Boyer, "Porous silicon layers used for gas sensor applications," Thin Solid Films, vol.297(1-2), pp. 317-320. 1997.
    7. W. Shin, K. Tajima, Y. Choi, N. Izu, I. Matsubara, and N. Murayama, "Planar catalytic combustor film for thermoelectric hydrogen sensor," Sensors. Actuat. B-Chem., vol.108(1-2), pp. 455-460. 2005.
    8. K. Tajima, F. Qiu, W. Shin, N. Izu, I. Matsubara, and N. Murayama, "Micromechanical fabrication of low-power thermoelectric hydrogen sensor," Sensors. Actuat. B-Chem., vol.108(1-2), pp. 973-978. 2005.
    9. C. Cheng, Y. Tsai, K. Lin, H. Chen, and W. Liu, "Hydrogen sensing properties of a Pt-oxide-Al 0.24 Ga 0.76 As high-electron-mobility transistor," Appl. Phys. Lett, vol.86(11), pp. 112103. 2005.
    10. H. Chen, Y. Chou, and C. Chu, "A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating," Sensors. Actuat. B-Chem., vol.85(1-2), pp. 10-18. 2002.
    11. P. Ripka, J. Kubik, M. Duffy, W. Hurley, and S. O'Reilly, "Current sensor in PCB technology," IEEE Sens. J., vol.5(3), pp. 433-438. 2005.
    12. P. Tobias, A. Baranzahi, A. Spetz, O. Kordina, E. Janzen, and I. Lundstrom, "Fast chemical sensing with metal-insulator silicon carbidestructures," IEEE Electr. Device L., vol.18(6), pp. 287-289. 1997.
    13. K. Hjort. Micromechanics in indium phosphide for opto electrical applications. 1997.
    14. P. Moseley, "Solid state gas sensors," Meas. Sci. technol., vol.8, pp. 223-237. 1997.
    15. N. Yamazoe and N. Miura, "Development of gas sensors for environmental protection," IEEE T. Compon. Pack. A, vol.18(2), pp. 252-256. 1995.
    16. A. Mandelis and C. Christofides, Physics, chemistry, and technology of solid state gas sensor devices. 1993: Wiley-Interscience.
    17. S. Cho, K. Najafi, C. Lowman, and K. Wise, "An ultrasensitive silicon pressure-based microflow sensor," IEEE T. Electron Dev., vol.39(4), pp. 825-835. 1992.
    18. W. Gopel, "New materials and transducers for chemical sensors," Sensors. Actuat. B-Chem., vol.18(1-3), pp. 1-21. 1994.
    19. C. Christofides and A. Mandelis, "Solid state sensors for trace hydrogen gas detection," J. Appl. Phys., vol.68, pp. R1. 1990.
    20. G. Maclay, W. Buttner, and J. Stetter, "Microfabricated amperometric gas sensors," IEEE T. Electron Dev., vol.35(6), pp. 793-799. 1988.
    21. S. Morrison, "Semiconductor gas sensors," Sensor. Actuator., vol.2, pp. 329-341. 1982.
    22. P. Warneck, Chemistry of the natural atmosphere. 1988: Academic Press.
    23. N. Campbell and J. Reece, Biology. 7th. 2005, San Francisco, Pearson Education.
    24. S. Manahan, Environmental chemistry. 2004: CRC.
    25. S. Lee, Y. Lee, C. Shim, N. Choi, B. Joo, K. Song, J. Huh, and D. Lee, "Three electrodes gas sensor based on ITO thin film," Sensors. Actuat. B-Chem., vol.93(1-3), pp. 31-35. 2003.
    26. H. Nichev, D. Dimova-Malinovska, V. Georgieva, O. Angelov, J. Pivin, and V. Mikli, "Sensitivity of Zno Films Doped with Er, Ta and Co to NH3 at Room Temperature," Nanostructured Materials for Advanced Technological Applications, vol., pp. 303-306.
    27. L. Zhang, F. Meng, Y. Chen, J. Liu, Y. Sun, T. Luo, and M. Li, "A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays," Sensors. Actuat. B-Chem., vol. 2009.
    28. D. Kohl, "Function and applications of gas sensors," Journal of Physics D: Applied Physics, vol.34, pp. R125-R149. 2001.
    29. A. Dubbe, "Fundamentals of solid state ionic micro gas sensors," Sensors. Actuat. B-Chem., vol.88(2), pp. 138-148. 2003.
    30. B. Timmer, W. Olthuis, and A. Berg, "Ammonia sensors and their applications--a review," Sensors. Actuat. B-Chem., vol.107(2), pp. 666-677. 2005.
    31. S. Krupa, "Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review," Environmental Pollution, vol.124(2), pp. 179-221. 2003.
    32. D. Oudendag and H. Luesink, "The Manure Model: manure, minerals (N, P and K), ammonia emission, heavy metals and the use of fertiliser in Dutch agriculture," Environmental Pollution, vol.102(1), pp. 241-246. 1998.
    33. J. Erisman, R. Otjes, A. Hensen, P. Jongejan, P. van den Bulk, A. Khlystov, H. Mols, and S. Slanina, "Instrument development and application in studies and monitoring of ambient ammonia," Atmospheric Environment, vol.35(11), pp. 1913-1922. 2001.
    34. B. Rumburg, Differential optical absorption spectroscopy (DOAS) measurements of atmospheric ammonia in the mid-ultraviolet from a dairy: Concentrations, emissions, and modeling. 2006, WASHINGTON STATE UNIVERSITY.
    35. T. Durbin, R. Wilson, J. Norbeck, J. Miller, T. Huai, and S. Rhee, "Estimates of the emission rates of ammonia from light-duty vehicles using standard chassis dynamometer test cycles," Atmospheric Environment, vol.36(9), pp. 1475-1482. 2002.
    36. R. Moos, R. Muller, C. Plog, A. Knezevic, H. Leye, E. Irion, T. Braun, K. Marquardt, and K. Binder, "Selective ammonia exhaust gas sensor for automotive applications," Sensors. Actuat. B-Chem., vol.83(1-3), pp. 181-189. 2002.
    37. S. Buckley, C. Damm, W. Vitovec, L. Sgro, R. Sawyer, C. Koshland, and D. Lucas, "Ammonia detection and monitoring with photofragmentation fluorescence," Applied optics, vol.37(36), pp. 8382-8391. 1998.
    38. T. Ahmet, "Use of low temperature energy sources in aqua-ammonia absorption refrigeration systems," Energy Conversion and Management, vol.38(14), pp. 1431-1438. 1997.
    39. P. Colonna and S. Gabrielli, "Industrial trigeneration using ammonia-water absorption refrigeration systems (AAR)," Applied thermal engineering, vol.23(4), pp. 381-396. 2003.
    40. L. Close, F. Catlin, and A. Cohn, "Acute and chronic effects of ammonia burns of the respiratory tract," Archives of Otolaryngology¡XHead & Neck Surgery, vol.106(3), pp. 151. 1980.
    41. P. Gao, Y. Ding, and Z. Wang, "Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst," Nano letters, vol.3(9), pp. 1315-1320. 2003.
    42. Z. Pan, Z. Dai, and Z. Wang, "Nanobelts of semiconducting oxides," Science, vol.291(5510), pp. 1947. 2001.
    43. I. Lyubchanskii, N. Dadoenkova, M. Lyubchanskii, E. Shapovalov, A. Lakhtakia, and T. Rasing, "One-dimensional bigyrotropic magnetic photonic crystals," Applied Physics Letters, vol.85, pp. 5932. 2004.
    44. L. Liao, H. Lu, J. Li, H. He, D. Wang, D. Fu, C. Liu, and W. Zhang, "Size dependence of gas sensitivity of ZnO nanorods," J. Phys. Chem. C, vol.111(5), pp. 1900¡V1903. 2007.
    45. O. Lupan, G. Chai, and L. Chow, "Novel hydrogen gas sensor based on single ZnO nanorod," Microelectronic Engineering, vol.85(11), pp. 2220-2225. 2008.
    46. N. Zhang, K. Yu, L. Li, and Z. Zhu, "Investigation of electrical and ammonia sensing characteristics of Schottky barrier diode based on a single ultra-long ZnO nanorod," Applied Surface Science, vol.254(18), pp. 5736-5740. 2008.
    47. O. Lupan, G. Chai, and L. Chow, "Fabrication of ZnO nanorod-based hydrogen gas nanosensor," Microelectronics Journal, vol.38(12), pp. 1211-1216. 2007.
    48. S. Basu and A. Dutta, "Room-temperature hydrogen sensors based on ZnO," Materials Chemistry and Physics, vol.47(1), pp. 93-96. 1997.
    49. X. Huang and Y. Choi, "Chemical sensors based on nanostructured materials," Sensors. Actuat. B-Chem., vol.122(2), pp. 659-671. 2007.
    50. M. Ivanovskaya, A. Gurlo, and P. Bogdanov, "Mechanism of O3 and NO2 detection and selectivity of In2O3 sensors," Sensors. Actuat. B-Chem., vol.77(1-2), pp. 264-267. 2001.
    51. F. T. Liu, S. F. Gao, S. K. Pei, S. C. Tseng, and C. H. J. Liu, "ZnO nanorod gas sensor for NO2 detection," J. Taiwan Inst. Chem. Eng., vol.40(5), pp. 528-532. 2009.
    52. E. Oh, H. Y. Choi, S. H. Jung, S. Cho, J. C. Kim, K. H. Lee, S. W. Kang, J. Kim, J. Y. Yun, and S. H. Jeong, "High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation," Sensors and Actuators B-Chemical, vol.141(1), pp. 239-243. 2009.
    53. J. Park and J. Y. Oh, "Highly-sensitive NO2 Detection of ZnO Nanorods Grown by a Sonochemical Process," Journal of the Korean Physical Society, vol.55(3), pp. 1119-1122. 2009.
    54. O. Safonova, G. Delabouglise, B. Chenevier, A. Gaskov, and M. Labeau, "CO and NO2 gas sensitivity of nanocrystalline tin dioxide thin films doped with Pd, Ru and Rh," Materials Science and Engineering: C, vol.21(1-2), pp. 105-111. 2002.
    55. J. Song and S. Lim, "Effect of seed layer on the growth of ZnO nanorods." 2006.

    56. D. C. Kim, B. H. Kong, H. K. Cho, D. J. Park, and J. Y. Lee, "Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metalorganic chemical vapour deposition," Nanotechnology, vol.18(1). 2007.
    57. C. C. Wu, D. S. Wuu, P. R. Lin, T. N. Chen, and R. H. Horng, "Realization and Manipulation of ZnO Nanorod Arrays on Sapphire Substrates Using a Catalyst-Free Metalorganic Chemical Vapor Deposition Technique," J. Nanosci. Nanotechnol., vol.10(5), pp. 3001-3011. 2010.
    58. A. N. Red'kin, Z. I. Makovei, A. N. Gruzintsev, E. E. Yakimov, O. V. Kononenko, and A. A. Firsov, "Elemental vapor-phase synthesis of nanostructured zinc oxide," Inorganic Materials, vol.45(11), pp. 1246-1251. 2009.
    59. C. W. Yu, S. H. Lai, T. Y. Wang, M. D. Lan, and M. S. Ho, "Patterned Fabrication of Single ZnO Nanorods and Measurement of Their Optoelectrical Characteristics," J. Nanosci. Nanotechnol., vol.8(9), pp. 4377-4381. 2008.
    60. Z. Fan, D. Dutta, C. Chien, H. Chen, E. Brown, P. Chang, and J. Lu, "Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays," Applied Physics Letters, vol.89, pp. 213110. 2006.
    61. T. Pauporte, G. Bataille, L. Joulaud, and F. J. Vermersch, "Well-Aligned ZnO Nanowire Arrays Prepared by Seed-Layer-Free Electrodeposition and Their Cassie-Wenzel Transition after Hydrophobization," Journal of Physical Chemistry C, vol.114(1), pp. 194-202. 2010.
    62. L. D. Wang, G. C. Liu, L. J. Zou, and D. F. Xue, "Phase evolution from rod-like ZnO to plate-like zinc hydroxysulfate during electrochemical deposition," Journal of Alloys and Compounds, vol.493(1-2), pp. 471-475. 2010.
    63. F. Xu, Y. N. Lu, Y. Xie, and Y. F. Liu, "Seed layer-free electrodeposition and characterization of vertically aligned ZnO nanorod array film," Journal of Solid State Electrochemistry, vol.14(1), pp. 63-70. 2010.
    64. J. Wang, X. Sun, Y. Yang, H. Huang, Y. Lee, O. Tan, and L. Vayssieres, "Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications," Nanotechnology, vol.17, pp. 4995-4998. 2006.
    65. G. Bauer and W. Richter, Optical characterization of epitaxial semiconductor layers. 1996: Springer Berlin.
    66. W. Zachariasen and E. Hill, "The Theory of X-ray Diffraction in Crystals," The Journal of Physical Chemistry, vol.50(3), pp. 289-290. 1946.
    67. J. Goldstein, D. Newbury, P. Echlin, C. Lyman, D. Joy, E. Lifshin, L. Sawyer, and J. Michael, Scanning electron microscopy and X-ray microanalysis. 2003: Plenum Pub Corp.
    68. J. Goldstein and H. Yakowitz, Practical scanning electron microscopy: electron and ion microprobe analysis. 1975: Plenum Press New York.
    69. H. Leamy, "Charge collection scanning electron microscopy." 1982.
    70. M. Hayat, "Basic techniques for transmission electron microscopy," Orlando, etc.: Academic Press 411pp.. Review by A. Glauert in J. Microsc, vol.143, pp. 323-324. 1986.
    71. T. Mulvey, "Experimental High-resolution Electron Microscopy," Journal of Modern Optics, vol.28(9), pp. 1173-1173. 1981.
    72. D. Williams and C. Carter, "The Transmission Electron Microscope," Transmission Electron Microscopy, vol., pp. 3-22.
    73. I. Shalish, H. Temkin, and V. Narayanamurti, "Size-dependent surface luminescence in ZnO nanowires," Physical Review B, vol.69(24), pp. 245401. 2004.
    74. J. H. Yang, Y. F. Qiu, and S. H. Yang, "Studies of electrochemical synthesis of ultrathin ZnO nanorod/nanobelt arrays on Zn substrates in alkaline solutions of amine-alcohol mixtures," Crystal Growth & Design, vol.7(12), pp. 2562-2567. 2007.
    75. Z. W. Mei, Y. Liu, H. Wang, S. J. Gao, X. G. Wen, L. Gu, Y. F. Qiu, and S. H. Yang, "Facile and Controllable Growth of ZnO 1D Nanostructure Arrays on Zn Substrate by Hydrothermal Process," J. Nanosci. Nanotechnol., vol.10(5), pp. 3123-3130. 2010.
    76. W. Y. Wu, J. M. Ting, and W. Y. Kung, "Hydrothermally Synthesized One-Dimensional ZnO Nanostructures," Journal of the Electrochemical Society, vol.157(4), pp. K71-K75. 2010.
    77. W. Li, E. Shi, W. Zhong, and Z. Yin, "Growth mechanism and growth habit of oxide crystals," Journal of crystal growth, vol.203(1), pp. 186-196. 1999.
    78. Y. Tak and K. Yong, "Controlled growth of well-aligned ZnO nanorod array using a novel solution method," J. Phys. Chem. B, vol.109(41), pp. 19263-19269. 2005.
    79. Z. Wang, X. Qian, J. Yin, and Z. Zhu, "Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency," Journal of Solid State Chemistry, vol.177(6), pp. 2144-2149. 2004.
    80. R. Laudise and A. Ballman, "HYDROTHERMAL SYNTHESIS OF ZINC OXIDE AND ZINC SULFIDE1," The Journal of Physical Chemistry, vol.64(5), pp. 688-691. 1960.
    81. H. Quang, S. Chua, K. Loh, Z. Chen, C. Thompson, and E. Fitzgerald, "Growth of ZnO Nanorods on GaN Using Aqueous Solution Method," Advanced Materials for Micro-and Nano-Systems (AMMNS);, vol. 2005.
    82. J. S. Wu and D. F. Xue, "Morphology-tuned growth of ZnO microstructures," Materials Research Bulletin, vol.45(3), pp. 300-304. 2010.
    83. A. Yamada, H. Miyazaki, Y. Chiba, and M. Konagai, "High-efficiency Cu (InGa) Se2 solar cells with a zinc-based buffer layer," Thin Solid Films, vol.480, pp. 503-508. 2005.
    84. C. Hung and W. Whang, "A novel low-temperature growth and characterization of single crystal ZnO nanorods," Materials Chemistry & Physics, vol.82(3), pp. 705-710. 2003.
    85. Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, and X. Fan, "Growth of ZnO nanostructures with different morphologies by using hydrothermal technique," J. Phys. Chem. B, vol.110(41), pp. 20263-20267. 2006.
    86. D. Look, "Recent advances in ZnO materials and devices," Materials Science & Engineering B, vol.80(1-3), pp. 383-387. 2001.
    87. U. Ozgur, Y. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Do an, V. Avrutin, S. Cho, and H. Morkoc, "A comprehensive review of ZnO materials and devices," J. Appl. Phys., vol.98, pp. 041301. 2005.
    88. Z. Tian, J. Voigt, J. Liu, B. Mckenzie, M. Mcdermott, M. Rodriguez, H. Konishi, and H. Xu, "Complex and oriented ZnO nanostructures," Nature materials, vol.2(12), pp. 821-826. 2003.
    89. H. Wang, B. Kang, F. Ren, L. Tien, P. Sadik, D. Norton, S. Pearton, and J. Lin, "Hydrogen-selective sensing at room temperature with ZnO nanorods," Applied Physics Letters, vol.86, pp. 243503. 2005.
    90. X. Wang, J. Zhang, and Z. Zhu, "Ammonia sensing characteristics of ZnO nanowires studied by quartz crystal microbalance," Applied Surface Science, vol.252(6), pp. 2404-2411. 2006.
    91. A. Sadek, S. Choopun, W. Wlodarski, S. Ippolito, and K. Kalantar-Zadeh, "Characterization of ZnO nanobelt-based gas sensor for H 2, NO 2, and hydrocarbon sensing," IEEE Sens. J., vol.7(6), pp. 919-924. 2007.
    92. H. Xia, Y. Wang, F. Kong, S. Wang, B. Zhu, X. Guo, J. Zhang, and S. Wu, "Au-doped WO3-based sensor for NO2 detection at low operating temperature," Sensors. Actuat. B-Chem., vol.134(1), pp. 133-139. 2008.
    93. H. Mbarek, M. Saadoun, and B. Bessa s, "Screen-printed Tin-doped indium oxide (ITO) films for NH3 gas sensing," Materials Science and Engineering: C, vol.26(2-3), pp. 500-504. 2006.
    94. V. Srivastava and K. Jain, "Highly sensitive NH3 sensor using Pt catalyzed silica coating over WO3 thick films," Sensors. Actuat. B-Chem., vol.133(1), pp. 46-52. 2008.
    95. M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi, and J. G. Park, "On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity," Sensors and Actuators B-Chemical, vol.138(1), pp. 168-173. 2009.
    96. N. Korsunska, L. Borkovska, B. Bulakh, L. Khomenkova, V. Kushnirenko, and I. Markevich, "The influence of defect drift in external electric field on green luminescence of ZnO single crystals," Journal of Luminescence, vol.102, pp. 733-736. 2003.
    97. C. Li, Z. Du, L. Li, H. Yu, Q. Wan, and T. Wang, "Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature," Applied Physics Letters, vol.91, pp. 032101. 2007.
    98. K. Vanheusden, W. Warren, C. Seager, D. Tallant, J. Voigt, and B. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," J. Appl. Phys., vol.79, pp. 7983. 1996.
    99. Q. Wan, Q. Li, Y. Chen, T. Wang, X. He, J. Li, and C. Lin, "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors," Applied Physics Letters, vol.84, pp. 3654. 2004.
    100. C. N. Xu, J. Tamaki, N. Miura, and N. Yamazoe, "GRAIN-SIZE EFFECTS ON GAS SENSITIVITY OF POROUS SNO2-BASED ELEMENTS," Sensors and Actuators B-Chemical, vol.3(2), pp. 147-155. 1991.
    101. D. Manno, G. Micocci, R. Rella, A. Serra, A. Taurino, and A. Tepore, "Titanium oxide thin films for NH monitoring: Structural and physical characterizations," J. Appl. Phys., vol.82, pp. 54. 1997.
    102. E. Oh, H. Choi, S. Jung, S. Cho, J. Kim, K. Lee, S. Kang, J. Kim, J. Yun, and S. Jeong, "High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation," Sensors. Actuat. B-Chem., vol. 2009.

    無法下載圖示 校內:2015-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE