簡易檢索 / 詳目顯示

研究生: 吳柏樺
Wu, Po-Hua
論文名稱: 熱電發電系統之研究:週期性溫度對模組運作之影響及運用基因演算法進行元件幾何形狀之最佳化設計
Investigation of a Thermoelectric Generator System: Effect of periodic temperature on a module's performance and optimal design of element geometry by genetic algorithm
指導教授: 陳維新
Chen, Wei-Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 88
中文關鍵詞: 熱電發電器溫度振盪相位角增強因子熱管優化多目標基因演算法數值模擬。
外文關鍵詞: Thermoelectric generators, Temperature oscillation, Phase angle, Intensification factor, Heat pipes, Optimization, Multi-objective genetic algorithm (MOGA), Numerical simulation.
相關次數: 點閱:166下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電發電器(thermoelectric generator)是一種將熱能轉換成電能之設備,具有很大的前景性,熱電發電器之熱源能夠回收廢熱,進而提升燃料之使用效率。本研究針對熱電發電系統,分為兩個部分,第一部分為探討週期性溫度對熱電發電器影響之研究,第二部分為運用基因演算法進行元件幾何形狀之最佳化設計。
    第一部分的研究中,操作條件之控制是提高熱電發電器輸出功率的有效方法。本研究之目的在於探討一個數值熱電發電器之輸出功和效率,以及找到使其最佳化的性能之操作條件。熱電發電器在熱面以及冷面的溫度分布近似於正弦函數。溫度振幅在熱端表面、冷端表面、以及不同相位角對熱電發電器的性能影響進行分析。熱電發電器的平均功率和效率能藉由溫度之振盪而明顯增加、但平均吸收熱只有些微影響。增加熱端表面的溫度振幅以及相位角可以有效地提昇熱電發電器之性能。當相位角為0 °時,在冷端表面,小的溫度振幅其性能比大的溫度振幅還要好。當熱電發電器之ZT值從0.736增加至1.8,相位角為180 °之平均效率可增強1.71倍,並且最大平均效率為8.45%。總而言之,相位角為180 °時,在熱端表面,大的溫度振幅是最佳化性能可行的操作。
    第二部分之研究目的為探討熱電發電器輸出功和效率藉由使用熱管之廢熱,以及優化其性能,熱電發電器的材料和室溫下之ZT值分別為Bi0.4Sb1.6Te3和1.18。結果顯示,熱端在定熱通量時,較長的元件長度具有更大的輸出功率以及效率;然而熱端在定溫時,較短的元件長度具有更大的輸出功率。透過多目標基因演算法(MOGA)設計熱電發電器之幾何結構,以最大化其效率。當溫差維持在40 ºC時,經過優化後之熱電發電器和原來之做比較,其輸出功率和效率提升約51.9 % 和5.4 %。一旦使用阻抗匹配,即內部電阻等於外部負載電阻,其輸出功率可以進一步提升約3.85-4.40%。當熱端之熱通量固定在20,000 W m-2,且冷熱端之溫差為40 ºC時,一對TEG元件之輸出功和效率可以分別達到7.99 mW和9.52 %。這些結果遠高於其他之研究報告。因此,可以得出結論,MOGA是設計熱電發電器之幾何形狀以便最大化其性能的強大工具。

    The thermoelectric generator (TEG) is a promising device to convert heat into electricity. The heat sources TEG recover waste heat to make a more efficient usage of fuels. This study of a thermoelectric generator system is divided into two parts. The first part explores effect of periodic temperature on a module's performance; the second part is optimal design of element geometry by genetic algorithm.
    In the first part, operation control is an effective way to improve the output power of TEGs. The present study is intended to numerically investigate the power output and efficiency of a TEG and find the operating conditions for maximizing its performance. The temperature distributions at the hot side and cold side surfaces of the TEG are approximated by sinusoidal functions. The influences of the temperature amplitudes at the hot side surface and the cold side surface, the phase angle, and the figure-of-merit (ZT) on the performance of the TEG are analyzed. The predictions indicate that the mean output power and efficiency of the TEG are significantly enhanced by the temperature oscillation, whereas the mean absorbed heat by the TEG is slightly influenced. An increase in the temperature amplitude of the hot side surface and the phase angle can effectively improve the performance. For the phase angle of 0 °, a smaller temperature amplitude at the cold side surface renders the better performance compared to that with a larger amplitude. When the ZT value increases from 0.736 to 1.8, the mean efficiency at the phase angle of 180 ° is amplified by a factor of 1.72, and the maximum mean efficiency is 8.45 %. In summary, a larger temperature amplitude at the hot side surface with the phase angle of 180 ° is a feasible operation for maximizing the performance.
    The purpose of second part is to investigate the output power and efficiency of a TEG system using waste heat from heat pipes, and then optimize its performance. The TEG material is Bi0.4Sb1.6Te3 and the figure-of-merit (ZT) is 1.18 at room temperature. The predictions indicate that a longer length of the elements has greater power output and efficiency based on a fixed heat flux on the hot side surface, whereas a shorter length has greater output power based on a fixed temperature difference. The geometry of the TEG is designed through a multi-objective genetic algorithm (MOGA) to maximize its efficiency. When the temperature difference is fixed at 40 ºC, the output power and efficiency of the TEG with optimization is increased by about 51.9% and 5.4%, compared to the TEG without optimization. Once the impedance matching, namely, the internal resistance is equal to the external load resistance, is used, the output power can be further enhanced by about 3.85-4.40%. When the heat flux is fixed at 20,000 Wm-2 along with the temperature difference of 40 ºC, the output power and efficiency of a pair of elements can be increased to 7.99 mW and 9.52%, respectively. These results are much higher than those reported in other studies. Accordingly, it is concluded that the MOGA is a powerful tool to design the geometry of a TEG for maximizing its performance.

    中文摘要 i Abstract iii 誌謝 v Table of Contents vi List of Tables ix List of Figures x Nomenclature xiii Chapter 1. Introduction 1 1.1 Background of thermoelectrics 1 1.2 Motivation and objective 5 1.2.1 Effect of periodic temperature on a module's performance 5 1.2.2 Optimal design of element geometry by genetic algorithm 6 1.3 A schematics of research procedure. 10 Chapter 2. Literature Review 11 2.1 Material preparation 11 2.2 Operation control 14 2.3 Device design 16 Chapter 3. Theory and Methodology 19 3.1 Physical models and assumptions 19 3.1.1 Physical models 19 3.1.2 Assumptions 23 3.2 Governing equations for thermoelectric system 23 3.3 Boundary conditions 24 3.3.1 Effect of periodic temperature on a module's performance 24 3.3.2 Optimal design of element geometry by genetic algorithm 25 3.4 Numerical method 26 3.5 Operating conditions and physical qualities 27 3.5.1 Effect of periodic temperature on a module's performance 27 3.5.2 Optimal design of element geometry by genetic algorithm 28 3.6 Multi-objective genetic algorithm, constraints and objective function 29 3.6.1 Multi-objective genetic algorithm (MOGA) 29 3.6.2 Constraints and objective function 32 Chapter 4. Results and Discussion 34 4.1 Effect of periodic temperature on a module's performance 34 4.1.1 Effect of phase angle 34 4.1.2 Effect of amplitude at the hot side surface 43 4.1.3 Effect of amplitude at the cold side surface 46 4.1.4 Effect of figure-of-merit 51 4.2 Optimal design of element geometry by genetic algorithm 57 4.2.1 Effects of heat flux through the hot surfaces 57 4.2.2 Effect of TEG element geometry 60 4.2.3 Optimal length determined by MOGA 64 Chapter 5. Conclusions and Future Work 76 5.1 Conclusions 76 5.1.1 Effect of periodic temperature on a module's performance 76 5.1.2 Optimal design of element geometry by genetic algorithm 77 5.2 Future work 78 References 80 自述 87

    [1] Şevik S. An analysis of the current and future use of natural gas-fired power plants in meeting electricity energy needs: The case of Turkey. Renewable and Sustainable Energy Reviews. 2015;52:572-86.
    [2] Hsiao YY, Chang WC, Chen SL. A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine. Energy. 2010;35:1447-54.
    [3] Lecompte S, Huisseune H, van den Broek M, Vanslambrouck B, De Paepe M. Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renewable and Sustainable Energy Reviews. 2015;47:448-61.
    [4] He W, Zhang G, Zhang X, Ji J, Li G, Zhao X. Recent development and application of thermoelectric generator and cooler. Applied Energy. 2015;143:1-25.
    [5] Chen W-H, Liao C-Y, Hung C-I. A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect. Applied Energy. 2012;89:464-73.
    [6] Riffat SB, Ma X. Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering. 2003;23:913-35.
    [7] Zhao D, Tan G. A review of thermoelectric cooling: Materials, modeling and applications. Applied Thermal Engineering. 2014;66:15-24.
    [8] Zhang G, Jiao K, Niu Z, Diao H, Du Q, Tian H, et al. Power and efficiency factors for comprehensive evaluation of thermoelectric generator materials. International Journal of Heat and Mass Transfer. 2016;93:1034-7.
    [9] Huang L, Zhang Q, Yuan B, Lai X, Yan X, Ren Z. Recent progress in half-Heusler thermoelectric materials. Materials Research Bulletin. 2016;76:107-12.
    [10] Chen W-H, Huang S-R, Lin Y-L. Performance analysis and optimum operation of a thermoelectric generator by Taguchi method. Applied Energy. 2015;158:44-54.
    [11] Dunham MT, Barako MT, LeBlanc S, Asheghi M, Chen B, Goodson KE. Power density optimization for micro thermoelectric generators. Energy. 2015;93:2006-17.
    [12] Yan Y, Malen JA. Periodic heating amplifies the efficiency of thermoelectric energy conversion. Energy & Environmental Science. 2013;6:1267.
    [13] Jang B, Han S, Kim J-Y. Optimal design for micro-thermoelectric generators using finite element analysis. Microelectronic Engineering. 2011;88:775-8.
    [14] Wang C-C, Hung C-I, Chen W-H. Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization. Energy. 2012;39:236-45.
    [15] Meng J-H, Zhang X-X, Wang X-D. Dynamic response characteristics of thermoelectric generator predicted by a three-dimensional heat-electricity coupled model. Journal of Power Sources. 2014;245:262-9.
    [16] Barma MC, Riaz M, Saidur R, Long BD. Estimation of thermoelectric power generation by recovering waste heat from Biomass fired thermal oil heater. Energy Conversion and Management. 2015;98:303-13.
    [17] Candadai AA, Kumar VP, Barshilia HC. Performance evaluation of a natural convective-cooled concentration solar thermoelectric generator coupled with a spectrally selective high temperature absorber coating. Solar Energy Materials and Solar Cells. 2016;145:333-41.
    [18] Zhang Y, Wang X, Cleary M, Schoensee L, Kempf N, Richardson J. High-performance nanostructured thermoelectric generators for micro combined heat and power systems. Applied Thermal Engineering. 2016;96:83-7.
    [19] Remeli MF, Date A, Orr B, Ding LC, Singh B, Affandi NDN, et al. Experimental investigation of combined heat recovery and power generation using a heat pipe assisted thermoelectric generator system. Energy Conversion and Management. 2016;111:147-57.
    [20] Muto A, Kraemer D, Hao Q, Ren ZF, Chen G. Thermoelectric properties and efficiency measurements under large temperature differences. Rev Sci Instrum. 2009;80:093901.
    [21] Dharmaiah P, Kim H-S, Lee C-H, Hong S-J. Influence of powder size on thermoelectric properties of p-type 25%Bi2Te375%Sb2Te3 alloys fabricated using gas-atomization and spark-plasma sintering. Journal of Alloys and Compounds. 2016;686:1-8.
    [22] Attia PM, Lewis MR, Bomberger CC, Prasad AK, Zide JMO. Experimental studies of thermoelectric power generation in dynamic temperature environments. Energy. 2013;60:453-6.
    [23] Snarskii AA, Bezsudnov IV. Rotating thermoelectric device in periodic steady state. Energy Conversion and Management. 2015;94:103-11.
    [24] Remeli MF, Tan L, Date A, Singh B, Akbarzadeh A. Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system. Energy Conversion and Management. 2015;91:110-9.
    [25] He W, Su Y, Wang YQ, Riffat SB, Ji J. A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors. Renewable Energy. 2012;37:142-9.
    [26] Zhang Z, Li W, Kan J, Xu D. Theoretical and experimental analysis of a solar thermoelectric power generation device based on gravity-assisted heat pipes and solar irradiation. Energy Conversion and Management. 2016;127:301-11.
    [27] Date A, Date A, Dixon C, Akbarzadeh A. Theoretical and experimental study on heat pipe cooled thermoelectric generators with water heating using concentrated solar thermal energy. Solar Energy. 2014;105:656-68.
    [28] Niu Z, Yu S, Diao H, Li Q, Jiao K, Du Q, et al. Elucidating modeling aspects of thermoelectric generator. International Journal of Heat and Mass Transfer. 2015;85:12-32.
    [29] Bomberger CC, Attia PM, Prasad AK, Zide JMO. Modeling passive power generation in a temporally-varying temperature environment via thermoelectrics. Applied Thermal Engineering. 2013;56:152-8.
    [30] Marseguerra M, Zio E, Podofillini L. Optimal reliability/availability of uncertain systems via multi-objective genetic algorithms. IEEE Transactions on Reliability. 2004;53:424-34.
    [31] Martorell S, Villanueva JF, Carlos S, Nebot Y, Sánchez A, Pitarch JL, et al. RAMS+C informed decision-making with application to multi-objective optimization of technical specifications and maintenance using genetic algorithms. Reliability Engineering & System Safety. 2005;87:65-75.
    [32] Cheng Y-H, Lin W-K. Geometric optimization of thermoelectric coolers in a confined volume using genetic algorithms. Applied Thermal Engineering. 2005;25:2983-97.
    [33] Cheng Y-H, Shih C. Maximizing the cooling capacity and COP of two-stage thermoelectric coolers through genetic algorithm. Applied Thermal Engineering. 2006;26:937-47.
    [34] Cao Q, Zheng J, Zhang K, Ma G. Thermoelectric properties of YbCd2Sb2 doped by Mg. Journal of Alloys and Compounds. 2016;680:278-82.
    [35] Su C-H. Thermal stability of melt grown Tl-doped PbTeSe material for thermoelectric applications. Materials Science in Semiconductor Processing. 2016;56:94-9.
    [36] Zhao J, Reid J, Iida T, Takarabe K, Wu M, Tse JS. Valence charge density of multi-doped Mg2Si thermoelectric materials from maximum entropy method analysis. Journal of Alloys and Compounds. 2016;681:66-74.
    [37] Jo S, Park SH, Ban HW, Gu DH, Kim B-S, Son JH, et al. Simultaneous improvement in electrical and thermal properties of interface-engineered BiSbTe nanostructured thermoelectric materials. Journal of Alloys and Compounds. 2016;689:899-907.
    [38] Fan Xa, Cai X, Rong Z, Yang F, Li G, Gan Z. Resistance pressing sintering: A simple, economical and practical technique and its application to p-type (Bi,Sb)2Te3 thermoelectric materials. Journal of Alloys and Compounds. 2014;607:91-8.
    [39] Son JH, Oh MW, Kim BS, Park SD, Min BK, Kim MH, et al. Effect of ball milling time on the thermoelectric properties of p-type (Bi,Sb)2Te3. Journal of Alloys and Compounds. 2013;566:168-74.
    [40] Chen W-H, Wu P-H, Wang X-D, Lin Y-L. Power output and efficiency of a thermoelectric generator under temperature control. Energy Conversion and Management. 2016;127:404-15.
    [41] Chen W-H, Huang S-R, Wang X-D, Wu P-H, Lin Y-L. Performance of a thermoelectric generator intensified by temperature oscillation. Energy. 2017;133:257-69.
    [42] Zhang G, Fan L, Niu Z, Jiao K, Diao H, Du Q, et al. A comprehensive design method for segmented thermoelectric generator. Energy Conversion and Management. 2015;106:510-9.
    [43] Chen W-H, Wang C-C, Hung C-I, Yang C-C, Juang R-C. Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator. Energy. 2014;64:287-97.
    [44] Hashim H, Bomphrey JJ, Min G. Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system. Renewable Energy. 2016;87, Part 1:458-63.
    [45] Zhu W, Deng Y, Gao M, Wang Y, Cui J, Gao H. Thin-film solar thermoelectric generator with enhanced power output: Integrated optimization design to obtain directional heat flow. Energy. 2015;89:106-17.
    [46] Chen M, Rosendahl LA, Condra T. A three-dimensional numerical model of thermoelectric generators in fluid power systems. International Journal of Heat and Mass Transfer. 2011;54:345-55.
    [47] Lesage FJ, Pagé-Potvin N. Experimental analysis of peak power output of a thermoelectric liquid-to-liquid generator under an increasing electrical load resistance. Energy Conversion and Management. 2013;66:98-105.
    [48] Chen W-H, Wang C-C, Hung C-I. Geometric effect on cooling power and performance of an integrated thermoelectric generation-cooling system. Energy Conversion and Management. 2014;87:566-75.
    [49] Chen Z, lin MY, Xu GD, Chen S, Zhang JH, Wang MM. Hydrothermal synthesized nanostructure Bi–Sb–Te thermoelectric materials. Journal of Alloys and Compounds. 2014;588:384-7.
    [50] Wang T-H, Wang Q-H, Leng C, Wang X-D. Parameter analysis and optimal design for two-stage thermoelectric cooler. Applied Energy. 2015;154:1-12.
    [51] Sharp J, Bierschenk J, Lyon HB. Overview of Solid-State Thermoelectric Refrigerators and Possible Applications to On-Chip Thermal Management. Proceedings of the IEEE. 2006;94:1602-12.
    [52] Antonova. EE, Looman. DC. Finite elements for thermoelectric device analysis in ANSYS. In: 24th international conference on thermoelectrics 215-8.
    [53] Silvester. PP, Ferrari. RL. Finite elements for electrical engineers. 3rd ed New York: Cambridge University Press. 1996.
    [54] Zheng XF, Liu CX, Yan YY, Wang Q. A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications. Renewable and Sustainable Energy Reviews. 2014;32:486-503.
    [55] Champier D, Bédécarrats JP, Kousksou T, Rivaletto M, Strub F, Pignolet P. Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy. 2011;36:1518-26.
    [56] Sahin AZ, Yilbas BS. The influence of operating and device parameters on the maximum efficiency and the maximum output power of thermoelectric generator. International Journal of Energy Research. 2012;36:111-9.
    [57] Wen J, Yang H, Tong X, Li K, Wang S, Li Y. Configuration parameters design and optimization for plate-fin heat exchangers with serrated fin by multi-objective genetic algorithm. Energy Conversion and Management. 2016;117:482-9.
    [58] Wang L, Kolios A, Nishino T, Delafin P-L, Bird T. Structural optimisation of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm. Composite Structures. 2016;153:123-38.
    [59] Aswal DK, Basu R, Singh A. Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Conversion and Management. 2016;114:50-67.
    [60] Dai YJ, Hu HM, Ge TS, Wang RZ, Kjellsen P. Investigation on a mini-CPC hybrid solar thermoelectric generator unit. Renewable Energy. 2016;92:83-94.
    [61] Bonin R, Boero D, Chiaberge M, Tonoli A. Design and characterization of small thermoelectric generators for environmental monitoring devices. Energy Conversion and Management. 2013;73:340-9.
    [62] Forman C, Muritala IK, Pardemann R, Meyer B. Estimating the global waste heat potential. Renewable and Sustainable Energy Reviews. 2016;57:1568-79.
    [63] Fan L, Zhang G, Wang R, Jiao K. A comprehensive and time-efficient model for determination of thermoelectric generator length and cross-section area. Energy Conversion and Management. 2016;122:85-94.
    [64] Hsu C-T, Huang G-Y, Chu H-S, Yu B, Yao D-J. Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators. Applied Energy. 2011;88:1291-7.
    [65] Gou X, Xiao H, Yang S. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system. Applied Energy. 2010;87:3131-6.
    [66] Zheng XF, Yan YY, Simpson K. A potential candidate for the sustainable and reliable domestic energy generation–Thermoelectric cogeneration system. Applied Thermal Engineering. 2013;53:305-11.
    [67] Madan D, Wang Z, Wright PK, Evans JW. Printed flexible thermoelectric generators for use on low levels of waste heat. Applied Energy. 2015;156:587-92.

    下載圖示 校內:2019-09-01公開
    校外:2019-09-01公開
    QR CODE