| 研究生: |
潘道政 Pan, Tao-Cheng |
|---|---|
| 論文名稱: |
建構多管理階層之混合型決策支援系統之雛型 Prototype of the compound decision support system for multi-level managers |
| 指導教授: |
林清河
Lin, Chin-Ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 決策支援系統 、知識分享 、模組化商業模型 、粗糙集理論 |
| 外文關鍵詞: | decision support system (DSS), knowledge sharing, component business model (CBM), rough set theory |
| 相關次數: | 點閱:108 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在全球化的競爭以及總體環境的快速變化下,知識在企業中扮演的角色越來越重要,企業間的知識分享更是現在組織策略的一部分。許多管理者在尋求更有效率地問題解決方案時,通常會使用決策支援系統,然而,大多數的決策支援系統僅供單一管理層級的管理者使用,使得該系統的用途受到限制,為了增加決策支援系統的使用範圍,本研究將發展一套多管理階層之混合型決策支援系統,供企業中多管理層級的各管理者使用,該系統包含模組導向及知識導向之建構,就模組導向而言,將透過模組化商業模型之文獻及專家訪談建立固定模組,提供不同管理層級之管理者更有效率地獲得資訊;於知識導向之應用,則利用粗糙集理論中的方法,將各模組所得之資料進行分析以挖掘出重要資訊,並約簡為決策知識,最後產生可行之替代方案以解決問題。藉此本研究建立出一套協助高、中、基層管理者制定決策之決策支援系統,當管理者面臨決策問題時,可提供數個替代方案作為決策制定之依據。
In a competitive and rapidly changing environment, knowledge management has become more important for enterprises to achieve competence, and knowledge sharing must be viewed as an important part of enterprise strategies. In general, a decision support system (DSS) is a good tool for managers to use to resolve the decision making problem. However, most DSSs are focused on a specific departmental scope or are proposed only for one management level, so the development of such systems will be limited. In order to expand the DSS application, in this study, a prototype of a compound DSS is constructed, which is a combination of a model-driven and a knowledge-driven DSS, by including three management levels (i.e., top, middle and first-line management). A model-driven DSS component business model (CBM) and in-depth expert interviews are used to identify main manufacturing activities and to connect databases to obtain the decisions of other enterprises, while knowledge-driven DSS rough set theory is employed to mine and choose the data on enterprise decisions from the CBM. Through the use of these methods, managers will obtain some decisions from other enterprises, so they can make decisions related to problem solving more efficiently than they could without this reference. In conclusion, the model this study proposed will support three management levels to make appropriate decisions through a process of enterprise knowledge sharing.
Alter, S. (1977). A taxonomy of decision support systems. Sloan Management Review, 19(1), 39-56.
Bai, C., & Sarkis, J. (2010). Green supplier development: Analytical evaluation using rough set theory. Journal of Cleaner Production, 18(12), 1200-1210.
Bhargava, H. K., Power, D. J., & Sun, D. (2007). Progress in web-based decision support technologies. Decison Support Systems, 43(4), 1083-1095.
Chau, V. T. N., & Phung, N. H. (2012). A knowledge-driven educational decision support system. Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), 2012 IEEE RIVF International Conference On, Ho Chi Minh City, 2012, 1-6.
Chu, M.-T., KrishnaKumar, P., & Khosla, R. (2014). Mapping knowledge sharing traits to business strategy in knowledge based organisation. Journal of Intelligent Manufacturing, 25(1), 55-65.
Courtney, J. F. (2001). Decision making and knowledge management in inquiring organizations: Toward a new decision-making paradigm for DSS. Decison Support Systems, 31(1), 17-38.
Davenport, T. H., & Prusak, L. (1998). Working Knowledge: How Organizations Manage What They Know: Boston, Harvard Business School Press.
Demirkan, H., Kauffman, R. J., Vayghan, J. A., Fill, H. G., Karagiannis, D., & Maglio, P. P. (2008). Service-oriented technology and management: Perspectives on research and practice for the coming decade. Electronic Commerce Research and Applications, 7(4), 356-376.
Demirkan, H., & Spohrer, J. (2014). Developing a framework to improve virtual shopping in digital malls with intelligent self-service systems. Journal of Retailing and Consumer Services, 21(5), 860-868.
Drnevich, P. L., & Croson, D. C. (2013). Information technology and business-level strategy: Toward an integrated theoretical perspective. MIS Quarterly, 37(2), 483-509.
Gorry, G. A., & Scott Morton, M. S. (1971). A framework for management information systems. Sloan Management Review, 13(1), 50-70.
Henderson, S. S., & Smith-King, E. J. (2015). Sectoral decision making: Structures, processes and trust. Management Decision, 53(7), 1545-1559.
Holsapple, C. W. (2008). DSS architecture and types. In F. Burstein & C. W. Holsapple (Eds.), Handbook on Decision Support Systems 1 (pp. 163-189). German: Springer.
Hormby, S., Morrison, J., Dave, P., Meyers, M., & Tenca, T. (2010). Marriott International increases revenue by implementing a group pricing optimizer. Interfaces, 40(1), 47-57.
Hubert Ofner, M., Straub, K., Otto, B., & Österle, H. (2013). Management of the master data lifecycle: A framework for analysis. Journal of Enterprise Information Management, 26(4), 472-491.
Imache, R., Izza, S., & Ahmed-Nacer, M. (2015). Clustering-based urbanisation to improve enterprise information systems agility. Enterprise Information Systems, 9(8), 861-877.
Kijpokin, K. (2016). Implementing Business Intelligence in Contemporary Organizations. Business Intelligence: Concepts, Methodologies, Tools, and Applications (pp. 33-48). Hershey, PA, USA: IGI Global.
Kwok, S. H., & Gao, S. (2005). Attitude towards knowledge sharing behavior. The Journal of Computer Information Systems, 46(2), 45-51.
Lai, M.-C., Huang, H.-C., & Wang, W.-K. (2011). Designing a knowledge-based system for benchmarking: A DEA approach. Knowledge-Based Systems, 24(5), 662-671.
Laudon, K. C., & Laudon, J. P. (2014). Management Information Systems. Upper Saddle River, New Jersey: Pearson Education.
Lee, T. S., & Tsai, H. J. (2005). The effects of business operation mode on market orientation, learning orientation and innovativeness. Industrial Management & Data Systems, 105(3), 325-348.
Li, W., & Xu, W. (2015). Multigranulation decision-theoretic rough set in ordered information system. Fundamenta Informaticae, 139(1), 67-89.
Lin, C., Lin, C. M., Yen, D. C., & Wu, W.-h. (2012). The integrated information architecture: A pilot study approach to leveraging logistics management with regard to influenza preparedness. Journal of Medical Systems, 36(1), 187-200.
Liu, Q., & Liu, G. (2010). Research on the framework of decision support system based on ERP systems. Education Technology and Computer Science (ETCS), 2010 Second International Workshop on, Wuhan City, 2010, 704-707.
Mahar, S., Winston, W., & Wright, P. D. (2013). Eli Lilly and Company uses integer programming to form volunteer teams in impoverished countries. Interfaces, 43(3), 268-284.
Michael, H. Z. (1999). Developing a knowledge strategy. California Management Review, 41(3), 125.
Mun, Y. Y., & Hwang, Y. (2003). Predicting the use of web-based information systems: Self-efficacy, enjoyment, learning goal orientation, and the technology acceptance model. International Journal of Human-Computer Studies, 59(4), 431-449.
Nasr, E. S., Kilgour, M. D., & Noori, H. (2015). Strategizing niceness in co-opetition: The case of knowledge exchange in supply chain innovation projects. European Journal of Operational Research, 244(3), 845-854.
Ndlela, L. T., & Du Toit, A. (2001). Establishing a knowledge management programme for competitive advantage in an enterprise. International Journal of Information Management, 21(2), 151-165.
Pawlak, Z. (1982). Rough sets. International Journal of Computer & Information Sciences, 11(5), 341-356.
Pawlak, Z. (1998). Rough set theory and its applications to data analysis. Cybernetics & Systems, 29(7), 661-688.
Pearce II, J. A., & Robinson, R. B. (2005). Formulation, Implementation, and Control of Competitive Strategy. New York: McGraw-Hill.
Pohle, G., Korsten, P., & Ramamurthy, S. (2005). Component business models: Making specialization real. IBM Institute for Business Value., 1-16.
Power, D. J. (2008). Decision support systems: a historical overview. In L. C. Jain & C. P. Lim (Eds.), Handbook on Decision Support Systems 1 (pp. 121-140). German: Springer.
Power, D. J., & Sharda, R. (2007). Model-driven decision support systems: Concepts and research directions. Decision Support Systems, 43(3), 1044-1061.
Robbins, S., & Coulter, M. (2012). Management: Pearson Educational, Upper Saddle River, New Jersey.
Shafiei, F., Sundaram, D., & Piramuthu, S. (2012). Multi-enterprise collaborative decision support system. Expert Systems with Applications, 39(9), 7637-7651.
Shim, J. P., Warkentin, M., Courtney, J. F., Power, D. J., Sharda, R., & Carlsson, C. (2002). Past, present, and future of decision support technology. Decison Support Systems, 33(2), 111-126.
Shivade, C., Mukri, F., Ramnath, R., & Ramanathan, J. (2011). Method for continuous generation of component business model heat map using execution data for a complex service enterprise. Service Oriented System Engineering (SOSE), 2011 IEEE 6th International Symposium on, Irvune, CA, 2011, 241-250.
Stanek, S., Sroka, H., & Twardowski, Z. (2004). Directions for an ERP-based DSS. Proceedings of the 2004 IFIP International Conference On Decision Support Systems, Monash University, 2004, 1-9.
Sternad, S., Gradisar, M., & Bobek, S. (2011). The influence of external factors on routine ERP usage. Industrial Management & Data Systems, 111(9), 1511-1530.
Tian, Q., Ma, J., Liang, J., Kwok, R. C., & Liu, O. (2005). An organizational decision support system for effective R&D project selection. Decision Support Systems, 39(3), 403-413.
Turban, E., Sharda, R., & Delen, D. (2011). Decision support and business intelligence systems. India: Pearson Education.
van Diessen, R. J., Sierman, B., & Lee, C. A. (2008). Component business model for digital repositories: A framework for analysis. in Proc. iPRES, London, 2008, 13-19.
Vohra, R., & Das, N. N. (2011). Intelligent decision support systems for admission management in higher education institutes. International Journal of Artificial Intelligence & Applications, 2(4), 63-70.
Wang, D., Song, X., Yin, W., & Yuan, J. (2015). Forecasting core business transformation risk using the optimal rough set and the neural network. Journal of Forecasting, 34(6), 478-491.
Wen, K., Nagai, M., Chang, T., & Wen, H. (2008). An Introduction to Rough Set Theory and Application. Taiwan, ROC: Wu-Nan Publication.
Zheng, T., & Zhu, L. (2015). Uncertainty measures of Neighborhood System-based rough sets. Knowledge-Based Systems, 86, 57-65.
Zhengmeng, C., & Haoxiang, J. (2011). A brief review on decision support systems and it's applications. IT in Medicine and Education (ITME), 2011 International Symposium on, Cuangzhou City, 2011, 401-405.