| 研究生: |
謝尚甫 Hsieh, Shang-Fu |
|---|---|
| 論文名稱: |
直流/交流換流器之類比電路與系統設計 Analog Circuit and System Design for DC/AC Inverter |
| 指導教授: |
郭泰豪
Kuo, Tai-Haur |
| 共同指導教授: |
郭永超
Kuo, Yeong-Chau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 市電併聯 、獨立供電 、直流/交流 、換流器 |
| 外文關鍵詞: | Grid-connected, Stand-alone, DC/AC, Inverter |
| 相關次數: | 點閱:55 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研發適用於再生能源發電系統之直流轉交流換流器之控制晶片,有別於傳統之微處理器結合離散原件的實現方式,針對再生能源發電系統之直流轉交流換流器之積體電路化提出新式方法,使用精簡類比式電路設計控制結合低複雜度的市電併聯與獨立供電之演算法即可達到高轉換效率與低電流諧波之效能,大幅降低演算法之複雜度、硬體成本與運算量。有別於一般之直流轉直流轉換器之電路設計,本篇論文為解決輸出弦波之大範圍變化,提出多項高效能之創新電路。本篇論文所設計之換流器,輸入電壓操作在200V以上,未來可以將此技術結合超高電壓半導體之製程,更進一步降低換流器之成本。
此再生能源發電系統之直流轉交流換流器之控制晶片使用台灣積體電路製造股份有限公司所提供之0.18µm 1P6M 1.8V/3.3V混合訊號互補式金氧半製程所製造。全晶片面積約1x0.97mm2,遠小於傳統以微處理器方法實現之面積。此換流器控制器預期有96.5%之轉換效率與小於2.5%之電流諧波。與現有文獻之比較,本論文研製出目前世界上最小面積成本且最佳效能之直流轉交流換流器。
The research and invention of a DC/AC inverter controller chip for renewable sources generation system is presented in this thesis. It is different from the conventional approach which using microprocessor and discrete components for implementation. A novel solution is proposed for integrated circuit design of renewable sources generation system DC/AC inverter controller. The analog circuit is implemented with the simple control algorithm which is combined grid-connected mode and stand-alone mode control and reaches the high conversion efficiency and low current total harmonic distortion. It reduces the algorithm complexity, hardware cost and calculating operations. Unlike the circuits implemented for normal DC/DC converter, many innovative and high performance circuits are proposed for the purpose of solving the large voltage variation in output sinusoidal waveform. This work is designed for inverters operating in 200V input voltage. Further, the ultra high voltage BCD process can be combined with the proposed techniques in the future.
The DC/AC inverter controller is fabricated by TSMC 0.18µm 1P6M 1.8V/3.3V Mixed-Signal CMOS process. The total die area is about 1x0.97mm2, which is smaller than the conventional approach by microprocessors. This inverter is expected to reach 96.5% conversion efficiency and 2.5% current total harmonic distortions. Compared with the state-of-the-art approaches, this work archives the smallest area, the lowest cost and best performance in the world.
[1] D. C. Martins and R. Demonti, “Interconnection of a photovoltaic panels array to a single-phase utility line from a static conversion system,” in Proc. IEEE PESC, 2000, pp. 1207–1211.
[2] T. Shimizu, K. Wada, and N. Nakamura, “Flyback-type single-phase utility interactive inverter with power pulsation decoupling on the dc input for an ac photovoltaic module system,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1264–1272, Sep. 2006.
[3] C. Rodriguez and G. A. J. Amaratunga, “Long-lifetime power inverter for photovoltaic AC modules,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2593–2601, Jul. 2008.
[4] S. B. Kjaer and F. Blaabjerg, “Design optimization of a single phase inverter for photovoltaic applications,” in Proc. IEEE PESC, 2003, pp. 1183–1190.
[5] Q. Li and P. Wolfs, “A current fed two-inductor boost converter with an integrated magnetic structure and passive lossless snubbers for photovoltaic module integrated converter applications,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 309–321, Jan. 2007.
[6] Q. Li and P. Wolfs, “The power loss optimization of a current fed ZVS two-inductor boost converter with a resonant transition gate drive,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1253–1263, Sep. 2006.
[7] N. Kasa, T. Iida, and L. Chen, “Flyback inverter controlled by sensorless current MPPT for photovoltaic power system,” IEEE Trans. Ind. Electron., vol. 52, no. 4, pp. 1145–1152, Aug. 2005.
[8] B. Sahan, A. Vergara, N. Henze, A. Engler, and P. Zacharias, “A single-stage PV module integrated converter based on a low-power current-source inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2602–2609, Jul. 2008.
[9] J. F. Chen and C. L. Chu, “Combination voltage-controlled and current-controlled PWM inverters for UPS parallel operation,” IEEE Trans. Power Electron., vol. 10, no. 5, pp. 547–558, Sep. 1995.
[10] S. B. Kjaer, J. K. Pedersen, F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind. Applications, vol. 41, no. 5, pp. 1292–1306, Sep/Oct. 2005.
[11] N. Mohan, T. M. Undeland, W. P. Robbins, Power Electronics Converters, Applications and Design. 3rd ed. New York: Wiley, 2003.
[12] Y. Chen, K. Smedley, “A cost-effective single-stage inverter with maximum power point tracking,” IEEE Trans. Power Electron., vol. 19, no. 5, Sep. 2004.
[13] Y. Chen, K. Smedley, F. Vacher, and J. Brouwer, “A new maximum power point tracking controller for photovoltaic power generation,” in Proc. IEEE APEC’03 Conf., vol. 1, Feb. 2003, pp. 58–62.
[14] V. Vorperian, “Simplified analysis of PWM converters using model of PWM switch—Part I: Continuous conduction mode,” IEEE Trans. Aerospace Electron. Syst., vol. 26, pp. 490–496, May 1990.
[15] V. Vorperian, “Simplified analysis of PWM converters using model of PWM switch—Part II: Discontinuous conduction mode,” IEEE Trans. Aerospace Electron. Syst., vol. 26, pp. 497–505, May 1990.
[16] R. B. Ridley, “A new small-signal model for current-mode control,” Ph.D. dissertation, Virginia Polytechnic Inst. State Univ., Blacksburg, Nov. 1990.
[17] R. B. Ridley, “A new, continuous-time model for current-mode control,” IEEE Trans. Power Electron., vol. 6. no. 2. Apr. 1991.
[18] J. Ramirez-Angulo , S. G. I. Padilla, R. G. Carvajal, A. Torralba , M. Jimenez, F. Munoz, and A. Lopez-Martin, “Comparison of conventional and new flipped voltage structures with increased input/output signal swing and current sourcing/sinking capabilities,” in Proc. IEEE Int. Midwest Symp. Circuits Syst., Aug. 2005, pp. 1151–1154.
[19] R. G. Carvajal , J. Ramirez-Angulo, A. J. Lopez-Martin, A. Torralba , J. A. G. Galan, A. Carlosena, and F. M. Chavero , “The flipped voltage follower: A useful cell for low-voltage low-power circuit design,” IEEE Trans. Circuits Syst. I, Reg. Papers , vol. 5, no. 7, pp. 1276–1291, Jul. 2005.
[20] I. Padilla, J. Ramirez-Angulo, R. G. Carvajal, and A. Lopez-Martin , “Highly linear VI converter with programmable current mirrors,” in Proc. IEEE Int. Symp. Circuits Syst., May. 2007, pp. 941–944.
[21] H. P. Forghani-Zadeh and G. A. Rincon-Mora, “An accurate, continuous, and lossless self-learning CMOS current-sensing scheme for inductor based DC–DC converters,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 665–679, Mar. 2007.
[22] H. P. Forghani-zadeh and G. A. Rincón-Mora, “A lossless, accurate, self-calibrating current-sensing technique for DC-DC converters,” in Proc. 2005 Industrial Electronics Conf. (IECON), pp. 549–554.
[23] H. P. Forghani-zadeh and G. A. Rincón-Mora, “A continuous, low-glitch, low-offset, programmable gain and bandwidth gm–C filter,” in Proc. 2005 Midwest Symp. Circuits and Systems (MWSCAS), pp. 1629–1632.
[24] C. F. Lee and P. K. T. Mok, “A monolithic current-mode CMOS dc–dc converter with on-chip current-sensing technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3–14, Jan. 2004.
[25] A. S. Sedra and K. C. Smith, Microelectronic CIRCUITS. 5th ed. New York: Oxford, 2004.
[26] D. A. Johns and K. Martin, ANALOG INTEGRATED CIRCUIT DESIGN. New York: Wiley, 1997.
[27] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[28] W. S. Chu and K. W. Current, “A rail to rail voltage comparator,” in Proc. IEEE Int. Midwest Symp. Circuits Syst., Aug. 1997, pp. 160–163.
校內:2013-08-11公開