| 研究生: |
吳睿玹 Wu, Rui-Xuan |
|---|---|
| 論文名稱: |
基於數位控制之雙向直流電源轉換器研製 Design and Implementation of Bidirectional DC-DC Converter Based on Digital Control |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 雙向直流電源轉換器 、儲能系統 、數位控制 、直流匯流排 |
| 外文關鍵詞: | bidirectional DC-DC converter, battery energy-storage system, digital control, DC Bus |
| 相關次數: | 點閱:103 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研製一組用於儲能系統與直流微電網之間的雙向直流電源轉換器,基於數位控制方法來維持該雙向直流電源轉換器之穩定運行。當該雙向直流電源轉換器運行於降壓模式時,高壓側儲能系統對低壓側直流匯流排進行放電,當雙向直流電源轉換器運行於升壓模式時,低壓側直流匯流排對高壓側儲能系統進行充電,本文將回授高、低壓側電壓及電流形成閉迴路控制,使雙向直流電源轉換器之輸出電壓維持穩定。
本論文以32位元之微控制器STM32F407VET6開發板做為雙向直流電源轉換器之控制核心,其輸出電壓、電流之控制策略及各項偵測保護功能皆由編寫韌體控制程式完成。最後,本論文完成額定功率400 W,高壓側電壓72 V、低壓側電壓48 V之雙向直流電源轉換器之研製,並搭配儲能系統、直流電子負載以及直流電源供應器進行該雙向直流電源轉換器各項性能之實驗驗證。
This thesis presents the development of a bidirectional DC-DC converter based on digital control, utilizing a four-switch synchronous buck-boost converter and a microcontroller unit. The converter incorporates various components, including the auxiliary power supply circuit, switch driver circuit, voltage feedback circuit, and current feedback circuit. The adoption of a digital control scheme enhances control flexibility and accuracy, with the STM32F407VET6 microcontroller unit ensuring precise regulation and dynamic response. Experimental results demonstrate that the developed converter maintains stable operation effectively under different load-change conditions, thereby verifying its stability and effectiveness. Additionally, an experimental prototype of the bidirectional DC-DC converter is constructed, enabling bidirectional power transmission. This converter serves as a valuable component in various applications, contributing to the advancement of energy storage systems, electric vehicles, and renewable energy integration.
[1] E. O. Ogunniyi and H. Pienaar, “Overview of battery energy storage system advancement for renewable(photovoltaic) energy applications,” in Proc. 2017 International Conference on the Domestic Use of Energy(DUE), Cape Town, South Africa, Apr. 04-05, 2017, pp. 233-239.
[2] F. Liu, J. Xu, Z. Chen, R. Huang and X. Chen, “A constant frequency ZVS modulation scheme for four-switch buck-boost converter with wide input and output voltage ranges and reduced inductor current,” IEEE Trans. Industrial Electronics, vol. 70, no. 5, pp. 4931-4941, May 2023.
[3] L. Tian, X. Wu, C. Jiang and J. Yang, “A simplified real-time digital control scheme for ZVS four-switch buck-boost with low inductor current,” IEEE Trans. Industrial Electronics, vol. 69, no. 8, pp. 7920-7929, Aug. 2022.
[4] R. Pramanik and B.B. Pati, “Modelling and control of a non-isolated half-bridge bidirectional DC-DC converter with an energy management topology applicable with EV/HEV,” Journal of King Saud University-Engineering Sciences, vol. 35, no. 2, pp. 116-122, Feb. 2023.
[5] K. Sharma and D. K. Palwalia, “Design of digital PID controller for voltage mode control of DC-DC converters,” in Proc. 2017 International conference on Microelectronic Devices, Circuits and Systems(ICMDCS), Vellore, India, Aug. 10-12, 2017, pp. 1-6.
[6] Q. Xu, N. Vafamand, L. Chen, T. Dragičević, L. Xie and F. Blaabjerg, “Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 2, pp. 1205-1221, Apr. 2021.
[7] X. Li, Y. Liu and Y. Xue, “Four-switch buck-boost converter based on model predictive control with smooth mode transition capability,” IEEE Trans. Industrial Electronics, vol. 68, no. 10, pp. 9058-9069, Oct. 2021.
[8] S. Philip, P. K. Preetha and V. K. Gopal, “DC link voltage regulation of a battery integrated solar photo voltaic system,” in Proc. 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology(RTEICT), Bangalore, India, May 18-19, 2018, pp. 244-249.
[9] Z. Zhou, H. Li and X. Wu, “A constant frequency ZVS control system for the four-switch buck-boost DC-DC converter with reduced inductor current,” IEEE Trans. Power Electronics, vol. 34, no. 7, pp. 5996-6003, Jul. 2019.
[10] L. Liu, L. Sun, J. Xu, X. Zhang, C. Xu and X. Liao, “A 0.4-V startup, dead-zone-free, monolithic four-mode synchronous buck-boost converter,” IEEE Trans. Very Large Scale Integration(VLSI) Systems, vol. 31, no. 7, pp. 1004-1013, Jul. 2023.
[11] G. Yu, J. Dong, T. B. Soeiro, G. Zhu, Y. Yao and P. Bauer, “Three-mode variable-frequency ZVS modulation for four-switch buck+boost converters with ultra-high efficiency,” IEEE Trans. Power Electronics, vol. 38, no. 4, pp. 4805-4819, Apr. 2023.
[12] F. Iov, M. Ciobotaru, D. Sera, R. Teodorescu and F. Blaabjerg, “Power electronics and control of renewable energy systems,” in Proc. 2007 7th International Conference on Power Electronics and Drive Systems(PEDS), Bangkok, Thailand, Nov. 27-30, 2007, pp. 6-28.
[13] Y. Bai, S. Hu, Z. Yang, Z. Zhu and Y. Zhang, “Model predictive control for four-switch buck-boost converter based on tuning-free cost function with smooth mode transition,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 6, pp. 6607-6618, Dec. 2022.
[14] L. Cong, J. Liu and H. Lee, “A high-efficiency low-profile zero-voltage transition synchronous non-inverting buck-boost converter with auxiliary-component sharing,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 66, no. 1, pp. 438-449, Jan. 2019.
[15] J. Moon, J. Lee, S. Kim, G. Ryu, J. -P. Hong, J. Lee, H. Jin and J. Roh, “60-V non-inverting four-mode buck-boost converter with bootstrap sharing for non-switching power transistors,” IEEE Access, vol. 8, pp. 208221-208231, Nov. 2020.
[16] Q. Liu, Q. Qian, M. Zheng, S. Xu, W. Sun and T. Wang, “An improved quadrangle control method for four-switch buck-boost converter with reduced loss and decoupling strategy,” IEEE Trans. Power Electronics, vol. 36, no. 9, pp. 10827-10841, Sep. 2021.
[17] S. Li, K. Yu, G. Zhang, S. W. Sin, X. Zou and Q. Zou, “Design of fast transient response voltage-mode buck converter with hybrid feedforward and feedback technique,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 780-790, Feb. 2021.
[18] S. -W. Seo and H. H. Choi, “Digital implementation of fractional order PID-type controller for boost DC-DC converter,” IEEE Access, vol. 7, pp. 142652-142662, Oct. 2019.
[19] D. R. Lopez-Flores, J. L. Duran-Gomez and J. Vega-Pineda, “Discrete-time adaptive PID current controller for wind boost converter,” IEEE Latin America Transactions, vol. 21, no. 1, pp. 98-107, Jan. 2023.
[20] S. Jadhav, N. Devdas, S. Nisar and V. Bajpai, “Bidirectional DC-DC converter in solar PV system for battery charging application,” in Proc. 2018 International Conference on Smart City and Emerging Technology(ICSCET), Mumbai, India, Jan. 05, 2018, pp. 1-4.
[21] S. Mohanty, A. Choudhury, S. Pati, S. K. Kar and S. Khatua, “A comparative analysis between a single loop PI, double loop PI and sliding mode control structure for a buck converter,” in Proc. 2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON), Bhubaneswar, India, Jan. 08-09, 2021, pp. 1-6.
[22] W. Yu, H. Qian and J. -S. Lai, “Design of high-efficiency bidirectional DC-DC converter and high-precision efficiency measurement,” in Proc. 2008 34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, Nov. 10-13, 2008, pp. 685-690.
[23] J. Zhang, J. -S. Lai, R. -Y. Kim and W. Yu, “High-power density design of a soft-switching high-power bidirectional DC-DC converter,” IEEE Trans. Power Electronics, vol. 22, no. 4, pp. 1145-1153, Jul. 2007.
[24] Z. Rasin and M. F. Rahman, “Control of bidirectional DC-DC converter for battery storage system in grid-connected quasi-Z-source PV inverter,” in Proc. 2015 IEEE Conference on Energy Conversion(CENCON), Johor Bahru, Malaysia, Oct. 19-20, 2015, pp. 205-210.
[25] Z. Yu, H. Kapels and K. F. Hoffmann, “High efficiency bidirectional DC-DC converter with wide input and output voltage ranges for battery systems,” in Proc. PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, May 19-20, 2015, pp. 1-8.
[26] Texas Instruments, “Understanding Buck Power Stages in Switchmode Power Supplies,” Texas Instruments Corp., Texas, USA, Tech. Rep., Mar.1999.
[27] Texas Instruments, “Understanding Boost Power Stages in Switchmode Power Supplies,” Texas Instruments Corp., Texas, USA, Tech. Rep., Mar.1999.
[28] 李孟儒,應用於電池儲能系統雙向電力潮流直流轉換器之建模與實現,國立清華大學電機工程學系碩士論文,2010年6月。
[29] 紀欣亞,非隔離型雙向轉換器研製,國立中正大學電機工程學系碩士論文,2012年7月。
[30] 廖昱奇,風力發電機之電源轉換器研製,國立雲林科技大學電機工程學系碩士論文,2008年6月。
[31] 陳志勳,雙向並聯直流電源轉換模組之研製,國立成功大學電機工程學系碩士論文,2012年7月。
[32] Daniel W. Hart, Power Electronics, New York:McGraw-Hill, 2011.
[33] R. W. Erickson, Fundamentals of Power Electronics, Springer, 2001.
[34] 吳義利,切換式電源轉換器:原理與實用設計技術(實例設計導向),文笙書局,新北市,2018年8月。
[35] 梁適安,交換式電源供給器之理論與實務設計,全華圖書,新北市,2018年8月。
[36] STM32F407VET6 Datasheet, STMicroelectronics, 2020.
[37] RM0090-Reference manual, STMicroelectronics, 2021.
[38] MP9486 Datasheet, Monolithic Power Systems, 2018.
[39] AD8552 Datasheet, Analog Devices.
[40] IR2110 Datasheet, International Rectifier.
校內:2028-07-19公開