簡易檢索 / 詳目顯示

研究生: 黃楚鈞
Huang, Chu-Chun
論文名稱: 以時序轉錄體解析大豆種子胚胎發育與發芽後發育期間之基因表現
Temporal transcriptome profiling reveals genes involved in developmental transitions during soybean seed embryonic and post-germinative development
指導教授: 林哲揚
Lin, Jer-Young
張清俊
Chang, Ching-Chun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 112
中文關鍵詞: 大豆轉錄體種子發育
外文關鍵詞: Soybean, Transcriptome, Seed development
相關次數: 點閱:122下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高等植物的型態發生可以分為兩個部分,胚胎發育及發芽後發育。這兩個型態發生的過程中間有一段過渡時期,在過渡時期時細胞會停止分裂及分化。種子發育的過渡時期可分為成熟、脫水、休眠及種子吸水幾個階段。然而目前對於種子發育過程中,基因如何調控促進發育階段轉換的了解是非常有限的。因此本篇研究的目標是要去了解在胚胎發育到發芽後發育的過程中,哪些基因活性改變以調控發育階段的轉換。本篇研究將種子發育過程分為12個階段,包含了胚胎發育、過渡期及發芽後發育的時間點,並且分析12個階段中的轉錄體變化,以此了解有哪些基因參與調控種子胚胎發育的進程。分析中發現有部分在相較晚期表現功能的基因,會在較早期開始有轉錄體的表達或累積;比如脫水相關的耐旱基因在成熟期開始表達。此外,發現促進種子發芽相關的基因,如轉錄因子NAC40在成熟晚期就開始表達。據此進一步比對在阿拉伯芥中只在種子萌發時大量表達的基因,與其大豆同源基因的表現差異。經比對後發現有80%的大豆同源基因表現與阿拉伯芥不同。以此推測這些阿拉伯芥發芽相關的大豆同源基因、在大豆休眠期以前就開始表達的現象,可能是造成大豆是物理性休眠與阿拉伯芥是生理性休眠的原因之一。

    The development of higher plants can be separated into embryonic development and post-germinative development. These two morphogenesis events are bridged by a period of developmental arrest, which is characterized by cessation of cell differentiation and division, and, meanwhile, several biological events proceed subsequently, including maturation, desiccation, dormancy and germination. However, little is known about gene expression patterns throughout the entire transition process from embryonic to post-germinative development. We aim to profile gene activities that promote phase transitions from differentiation through germination and post-germination. We analyzed the transcriptome from 12 soybean seed developmental stages, including embryonic development, transition (maturation, desiccation and germination) and post-germinative development. Analysis of this considerable time course enabled the identification of adjacent up-regulated genes between successive stages and stage-specific gene activities. A significant number of genes are transcribed during seed filling stages and/or desiccation stages to accumulate in dormant seeds that may be neo-transcribed upon imbibition, and another group of genes had a different gene expression pattern compared to the Arabidopsis orthologs. This difference may imply the molecular basis of different dormancy types in soybean and Arabidopsis seeds, which is hardseededness dormancy and relatively deeper physiological dormancy, respectively. We proposed a model that the phenomenon of soybean genes homologous to the Arabidopsis germination-specific genes being expressed earlier than the germination in soybean might be one of the mechanisms contributing to distinct dormancy types between soybean and Arabidopsis seeds.

    中文摘要 I ABSTRACT II 致謝 VII TABLE OF CONTENTS VIII CONTENTS OF TABLES XI CONTENTS OF FIGURES XII ABBREVIATION LIST XIV 1. INTRODUCTION 1 1-1 THE DEVELOPMENTAL PROCESS OF SOYBEAN 1 1-2 THE MATURATION PHASE (RESERVE ACCUMULATION AND DESICCATION) DURING SEED DEVELOPMENT 1 1-3 SEED DORMANCY PROCESS 2 1-4 HORMONES REGULATION OF SEED DESICCATION, DORMANCY AND GERMINATION 2 1-5 PHYSICAL DORMANCY AND PHYSIOLOGICAL DORMANCY 3 1-6 COMPLETING THE TRANSCRIPTOME ANALYSIS FROM EMBRYO DEVELOPMENT STAGE THROUGH TRANSITION STAGES TO POST-EMBRYO DEVELOPMENT STAGES 4 1-7 THE DIFFERENT GENE EXPRESSION PATTERNS OF GERMINATION RELATED GENES MIGHT BE ONE OF THE MECHANISMS THAT SOYBEAN HAVE PHYSICAL DORMANCY 5 2. MATERIAL AND METHOD 7 2-1 PLANT GROWTH AND SEED COLLECTION 7 2-3 RNA-SEQ LIBRARY CONSTRUCTION 7 2-4 ILLUMINA NEXT-GENERATION SEQUENCING 8 2-5 RNA-SEQ DATA PROCESSING AND ANALYSIS 8 2-5-1 Soybean data processing 8 2-5-2 Arabidopsis data processing 9 2-5-3 RNA-seq Data analysis 9 3. RESULT 11 3-1 TRANSCRIPTOME CHARACTERISTICS OF DEVELOPING AND GERMINATING SOYBEAN EMBRYOS 11 3-1-1 Water content of each stage during seed development 11 3-1-2 Data processing and processing result 12 3-1-3 Reproducibility of each stage 12 3-1-4 Detected genes in each stage during seed development 13 3-1-5 The summary of data processing 13 3-2 DEVELOPMENTAL STAGES EXPERIENCED DESICCATION EXHIBIT DISTINCT MRNA POPULATIONS 13 3-3 TRANSCRIPTOMIC LANDSCAPES BETWEEN EMBRYONIC AND POST-EMBRYONIC DEVELOPMENT ARE CHARACTERIZED BY HIGHLY PREVALENT TRANSCRIPTS 14 3-3-1 RNA prevalence of each stage during seed development 14 3-3-2 Superabundant genes annotation 14 3-3-3 Highly prevalent genes clustering and GO analysis 15 3-3-4 The summary of highly prevalent genes 16 3-4 DIVERSE GENE SETS ARE UP-REGULATED TO PROMOTE DEVELOPMENTAL PROGRESS 16 3-4-1 Identify the adjacent up-regulated genes during seed development 16 3-4-2 Adjacent up-regulated genes enriched with diverse biological functions during the developmental process 18 3-4-3 The summary of adjacent up-regulated genes 30 3-5 IDENTIFICATION OF GENE SETS SPECIFICALLY EXPRESSED IN EACH OF THE DEVELOPMENTAL STAGES 30 3-5-1 Identify the stage-specific up-regulated genes 30 3-5-2 Stage-specific up-regulated genes enriched with diverse biological processes which were dominant in up-regulated genes 31 3-5-3 Identify the desiccation-specific up-regulated genes and TFs 32 3-6 THE EXPRESSION OF GERMINATION RELATED GENES MIGHT BE ONE OF THE MECHANISMS THAT SOYBEAN HAS DISTINCT DORMANCY TYPE AS COMPARED TO ARABIDOPSIS 33 3-6-1 The distinct expression patterns of genes involved in ABA metabolism pathways between soybean and Arabidopsis 33 3-6-2 The distinct expression patterns of genes involved in GA metabolism pathways between soybean and Arabidopsis 34 3-6-3 The model derived from comparing the gene expression patterns of the germination-, dormancy- and desiccation-related genes between soybean and Arabidopsis 35 4. DISCUSSION 38 4-1 THE FUNCTION OF SUPERABUNDANT GENES 38 4-2 DYNAMIC CHANGE OF CARBOHYDRATE METABOLIC BETWEEN NUTRITION RESERVATION AND ACQUISITION OF DROUGHT TOLERANCE 38 4-3 AUXIN MEDIATED SIGNALING PATHWAY GO TERMS ENRICHED AT EM 39 4-4 THE NITRATE TRANSPORTER GENE INVOLVED IN THE GO TERMS RESPONSE TO NITRATE STIMULUS AND NITRATE TRANSPORTER 40 4-5 THE ROS PRODUCTION GENES INVOLVED IN THE GO TERMS RESPONSE TO NITRATE STIMULUS AND NITRATE TRANSPORTER 40 4-6 FUNCTIONAL EXAMINATION OF CANDIDATE GENES WHICH MIGHT PLAY A ROLE IN ACQUISITION OF DESICCATION TOLERANCE 41 4-7 ABA METABOLISM DURING SEED DEVELOPMENT 43 4-8 GA BIOSYNTHESIS DURING SEED DEVELOPMENT 43 4-9 THE HYPOTHETICAL MODEL OF DIFFERENT SEED DORMANCY MECHANISMS BETWEEN SOYBEAN AND ARABIDOPSIS 44 REFERENCES 45 TABLES 59 FIGURES 64 APPENDICES 95

    Anders, S., Pyl, P.T., and Huber, W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169, 2015.

    Bai, B., Schiffthaler, B., van der Horst, S., Willems, L., Vergara, A., Karstrom, J., Mahler, N., Delhomme, N., Bentsink, L., and Hanson, J. SeedTransNet: A directional translational network revealing regulatory patterns during seed maturation and germination. J Exp Bot, 2022.

    Baskin, C.C., and Baskin, J.M. Chapter 3 - Types of Seed Dormancy. In Seeds, C.C. Baskin, and J.M. Baskin, eds. (San Diego: Academic Press), pp. 27-47. 1998.

    Belmonte, M.F., Kirkbride, R.C., Stone, S.L., Pelletier, J.M., Bui, A.Q., Yeung, E.C., Hashimoto, M., Fei, J., Harada, C.M., Munoz, M.D., Le, B.H., Drews, G.N., Brady, S.M., Goldberg, R.B., and Harada, J.J. Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc Natl Acad Sci U S A 110, E435-444, 2013.

    Bentsink, L., and Koornneef, M. Seed dormancy and germination. Arabidopsis Book 6, e0119, 2008.

    Bolger, A.M., Lohse, M., and Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120, 2014.

    Buitink, J., Leger, J.J., Guisle, I., Vu, B.L., Wuilleme, S., Lamirault, G., Le Bars, A., Le Meur, N., Becker, A., Kuster, H., and Leprince, O. Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds. Plant J 47, 735-750, 2006.

    Cadman, C.S., Toorop, P.E., Hilhorst, H.W., and Finch-Savage, W.E. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J 46, 805-822, 2006.
    Chahtane, H., Kim, W., and Lopez-Molina, L. Primary seed dormancy: a temporally multilayered riddle waiting to be unlocked. J Exp Bot 68, 857-869, 2017.

    Chen, K., Li, G.J., Bressan, R.A., Song, C.P., Zhu, J.K., and Zhao, Y. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol 62, 25-54, 2020.

    Chopin, F., Orsel, M., Dorbe, M.F., Chardon, F., Truong, H.N., Miller, A.J., Krapp, A., and Daniel-Vedele, F. The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell 19, 1590-1602, 2007.

    Dave, A., Vaistij, F.E., Gilday, A.D., Penfield, S.D., and Graham, I.A. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid. J Exp Bot 67, 2277-2284, 2016.

    de Koning, R., Kiekens, R., Toili, M.E.M., and Angenon, G. Identification and Expression Analysis of the Genes Involved in the Raffinose Family Oligosaccharides Pathway of Phaseolus vulgaris and Glycine max. Plants (Basel) 10, 2021.

    Dekkers, B.J., Pearce, S., van Bolderen-Veldkamp, R.P., Marshall, A., Widera, P., Gilbert, J., Drost, H.G., Bassel, G.W., Muller, K., King, J.R., Wood, A.T., Grosse, I., Quint, M., Krasnogor, N., Leubner-Metzger, G., Holdsworth, M.J., and Bentsink, L. Transcriptional dynamics of two seed compartments with opposing roles in Arabidopsis seed germination. Plant Physiol 163, 205-215, 2013.

    Dekkers, B.J., Pearce, S.P., van Bolderen-Veldkamp, R.P., Holdsworth, M.J., and Bentsink, L. Dormant and after-Ripened Arabidopsis thaliana Seeds are Distinguished by Early Transcriptional Differences in the Imbibed State. Front Plant Sci 7, 1323, 2016.

    Ding, Y., Liu, N., Virlouvet, L., Riethoven, J.J., Fromm, M., and Avramova, Z. Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol 13, 229, 2013.
    Dobrenel, T., Marchive, C., Azzopardi, M., Clement, G., Moreau, M., Sormani, R., Robaglia, C., and Meyer, C. Sugar metabolism and the plant target of rapamycin kinase: a sweet operaTOR? Front Plant Sci 4, 93, 2013.

    Feeney, M., Kittelmann, M., Menassa, R., Hawes, C., and Frigerio, L. Protein Storage Vacuoles Originate from Remodeled Preexisting Vacuoles in Arabidopsis thaliana. Plant Physiol 177, 241-254, 2018.

    Finkelstein, R., Reeves, W., Ariizumi, T., and Steber, C. Molecular aspects of seed dormancy. Annu Rev Plant Biol 59, 387-415, 2008.

    Franks, P.J., and Drake, P.L. Desiccation-induced loss of seed viability is associated with a 10-fold increase in CO(2) evolution in seeds of the rare tropical rainforest tree Idiospermum australiense. New Phytol 159, 253-261, 2003.

    Gani, U., Vishwakarma, R.A., and Misra, P. Membrane transporters: the key drivers of transport of secondary metabolites in plants. Plant Cell Rep 40, 1-18, 2021.

    Gao, P., Quilichini, T.D., Yang, H., Li, Q., Nilsen, K.T., Qin, L., Babic, V., Liu, L., Cram, D., Pasha, A., Esteban, E., Condie, J., Sidebottom, C., Zhang, Y., Huang, Y., Zhang, W., Bhowmik, P., Kochian, L.V., Konkin, D., Wei, Y., Provart, N.J., Kagale, S., Smith, M., Patterson, N., Gillmor, C.S., Datla, R., and Xiang, D. Evolutionary divergence in embryo and seed coat development of U's Triangle Brassica species illustrated by a spatiotemporal transcriptome atlas. New Phytol 233, 30-51, 2022.

    Gasulla, F., Vom Dorp, K., Dombrink, I., Zahringer, U., Gisch, N., Dormann, P., and Bartels, D. The role of lipid metabolism in the acquisition of desiccation tolerance in Craterostigma plantagineum: a comparative approach. Plant J 75, 726-741, 2013.

    Gipson, A.B., Morton, K.J., Rhee, R.J., Simo, S., Clayton, J.A., Perrett, M.E., Binkley, C.G., Jensen, E.L., Oakes, D.L., Rouhier, M.F., and Rouhier, K.A. Disruptions in valine degradation affect seed development and germination in Arabidopsis. Plant J 90, 1029-1039, 2017.
    Graeber, K., Nakabayashi, K., Miatton, E., Leubner-Metzger, G., and Soppe, W.J. Molecular mechanisms of seed dormancy. Plant Cell Environ 35, 1769-1786, 2012.

    Hajduch, M., Hearne, L.B., Miernyk, J.A., Casteel, J.E., Joshi, T., Agrawal, G.K., Song, Z., Zhou, M., Xu, D., and Thelen, J.J. Systems analysis of seed filling in Arabidopsis: using general linear modeling to assess concordance of transcript and protein expression. Plant Physiol 152, 2078-2087, 2010.

    Han, M., Zhang, C., Suglo, P., Sun, S., Wang, M., and Su, T. l-Aspartate: An Essential Metabolite for Plant Growth and Stress Acclimation. Molecules 26, 2021.

    Hendricks, S.B., and Taylorson, R.B. Promotion of seed germination by nitrate, nitrite, hydroxylamine, and ammonium salts. Plant Physiol 54, 304-309, 1974.

    Hofmann, F., Schon, M.A., and Nodine, M.D. The embryonic transcriptome of Arabidopsis thaliana. Plant Reprod 32, 77-91, 2019.

    Holdsworth, M.J., Bentsink, L., and Soppe, W.J.J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179, 33-54, 2008.

    Hoque, T.S., Hossain, M.A., Mostofa, M.G., Burritt, D.J., Fujita, M., and Tran, L.S. Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance. Front Plant Sci 7, 1341, 2016.

    Hoque, T.S., Uraji, M., Tuya, A., Nakamura, Y., and Murata, Y. Methylglyoxal inhibits seed germination and root elongation and up-regulates transcription of stress-responsive genes in ABA-dependent pathway in Arabidopsis. Plant Biol (Stuttg) 14, 854-858, 2012.

    Howell, K.A., Narsai, R., Carroll, A., Ivanova, A., Lohse, M., Usadel, B., Millar, A.H., and Whelan, J. Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process. Plant Physiol 149, 961-980, 2009.
    Hu, J., and Desai, M. Light control of peroxisome proliferation during Arabidopsis photomorphogenesis. Plant Signal Behav 3, 801-803, 2008.

    Hussain, S., Kim, S.H., Bahk, S., Ali, A., Nguyen, X.C., Yun, D.J., and Chung, W.S. The Auxin Signaling Repressor IAA8 Promotes Seed Germination Through Down-Regulation of ABI3 Transcription in Arabidopsis. Front Plant Sci 11, 111, 2020.

    Iglesias-Fernández, R., del Carmen Rodríguez-Gacio, M., and Matilla, A.J. Progress in research on dry afterripening. Seed Science Research 21, 69-80, 2011.

    Ishida, T., Adachi, S., Yoshimura, M., Shimizu, K., Umeda, M., and Sugimoto, K. Auxin modulates the transition from the mitotic cycle to the endocycle in Arabidopsis. Development 137, 63-71, 2010.

    Jain, M., Aggarwal, S., Nagar, P., Tiwari, R., and Mustafiz, A. A D-lactate dehydrogenase from rice is involved in conferring tolerance to multiple abiotic stresses by maintaining cellular homeostasis. Sci Rep 10, 12835, 2020.

    Johnson, D.C., Dean, D.R., Smith, A.D., and Johnson, M.K. Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74, 247-281, 2005.

    Jones, S.I., and Vodkin, L.O. Using RNA-Seq to profile soybean seed development from fertilization to maturity. PLoS One 8, e59270, 2013.

    Kambhampati, S., Aznar-Moreno, J.A., Bailey, S.R., Arp, J.J., Chu, K.L., Bilyeu, K.D., Durrett, T.P., and Allen, D.K. Temporal changes in metabolism late in seed development affect biomass composition. Plant Physiol 186, 874-890, 2021.

    Karssen, C.M., and Laçka, E. A Revision of the Hormone Balance Theory of Seed Dormancy: Studies on Gibberellin and/or Abscisic Acid-Deficient Mutants of Arabidopsis thaliana. Paper presented at: Plant Growth Substances 1985 (Berlin, Heidelberg: Springer Berlin Heidelberg), 1986.
    Kermode, A.R. Role of Abscisic Acid in Seed Dormancy. Journal of Plant Growth Regulation 24, 319-344, 2005.

    Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37, 907-915, 2019.

    Kim, M.J., Ciani, S., and Schachtman, D.P. A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Mol Plant 3, 420-427, 2010.

    Koprivova, A., and Kopriva, S. Molecular mechanisms of regulation of sulfate assimilation: first steps on a long road. Front Plant Sci 5, 589, 2014.

    Kunieda, T., Mitsuda, N., Ohme-Takagi, M., Takeda, S., Aida, M., Tasaka, M., Kondo, M., Nishimura, M., and Hara-Nishimura, I. NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis. Plant Cell 20, 2631-2642, 2008.

    Le, B.H., Cheng, C., Bui, A.Q., Wagmaister, J.A., Henry, K.F., Pelletier, J., Kwong, L., Belmonte, M., Kirkbride, R., Horvath, S., Drews, G.N., Fischer, R.L., Okamuro, J.K., Harada, J.J., and Goldberg, R.B. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci U S A 107, 8063-8070, 2010.

    Lee, K.P., Piskurewicz, U., Tureckova, V., Strnad, M., and Lopez-Molina, L. A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc Natl Acad Sci U S A 107, 19108-19113, 2010.

    Leeggangers, H.A., Folta, A., Muras, A., Nap, J.P., and Mlynarova, L. Reduced seed germination in Arabidopsis over-expressing SWI/SNF2 ATPase genes. Physiol Plant 153, 318-326, 2015.
    Leprince, O., Pellizzaro, A., Berriri, S., and Buitink, J. Late seed maturation: drying without dying. J Exp Bot 68, 827-841, 2017.

    Li, C., and Wong, W.H. DNA-Chip Analyzer (dChip). In The Analysis of Gene Expression Data: Methods and Software, G. Parmigiani, E.S. Garrett, R.A. Irizarry, and S.L. Zeger, eds. (New York, NY: Springer New York), pp. 120-141. 2003.

    Li, S. Endoreduplication during soybean seed development (Ann Arbor: Purdue University), pp. 91, 2004.

    Li, W., Niu, Y., Zheng, Y., and Wang, Z. Advances in the Understanding of Reactive Oxygen Species-Dependent Regulation on Seed Dormancy, Germination, and Deterioration in Crops. Front Plant Sci 13, 826809, 2022.

    Lin, J.Y., Le, B.H., Chen, M., Henry, K.F., Hur, J., Hsieh, T.F., Chen, P.Y., Pelletier, J.M., Pellegrini, M., Fischer, R.L., Harada, J.J., and Goldberg, R.B. Similarity between soybean and Arabidopsis seed methylomes and loss of non-CG methylation does not affect seed development. Proc Natl Acad Sci U S A 114, E9730-E9739, 2017.

    Liu, X., Zhang, H., Zhao, Y., Feng, Z., Li, Q., Yang, H.Q., Luan, S., Li, J., and He, Z.H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci U S A 110, 15485-15490, 2013.

    Liu, X.M., An, J., Han, H.J., Kim, S.H., Lim, C.O., Yun, D.J., and Chung, W.S. ZAT11, a zinc finger transcription factor, is a negative regulator of nickel ion tolerance in Arabidopsis. Plant Cell Rep 33, 2015-2021, 2014.

    Liu, Y., Ye, N., Liu, R., Chen, M., and Zhang, J. H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J Exp Bot 61, 2979-2990, 2010.
    Llorente, F., Lopez-Cobollo, R.M., Catala, R., Martinez-Zapater, J.M., and Salinas, J. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J 32, 13-24, 2002.

    Lofke, C., Dunser, K., Scheuring, D., and Kleine-Vehn, J. Auxin regulates SNARE-dependent vacuolar morphology restricting cell size. Elife 4, 2015.

    Lopez-Molina, L., Mongrand, S., McLachlin, D.T., Chait, B.T., and Chua, N.H. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32, 317-328, 2002.

    Love, M.I., Huber, W., and Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550, 2014.

    Ma, Y., Kanakousaki, K., and Buttitta, L. How the cell cycle impacts chromatin architecture and influences cell fate. Front Genet 6, 19, 2015.

    Mescia, T.B., Louro, R.P., Barbedo, C.J., Carbonero, E.R., Figueiredo-Ribeiro, R.C.L., and Braga, M.R. Changes in cell wall composition and ultrastructure related to desiccation during the seed maturation of Paubrasilia echinata (brazilwood). Protoplasma 259, 1255-1269, 2022.

    Moffatt, B.A., and Ashihara, H. Purine and pyrimidine nucleotide synthesis and metabolism. Arabidopsis Book 1, e0018, 2002.

    Moore, K.L., Rodriguez-Ramiro, I., Jones, E.R., Jones, E.J., Rodriguez-Celma, J., Halsey, K., Domoney, C., Shewry, P.R., Fairweather-Tait, S., and Balk, J. The stage of seed development influences iron bioavailability in pea (Pisum sativum L.). Sci Rep 8, 6865, 2018.

    Muller, K., Carstens, A.C., Linkies, A., Torres, M.A., and Leubner-Metzger, G. The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytol 184, 885-897, 2009.
    Nakabayashi, K., Okamoto, M., Koshiba, T., Kamiya, Y., and Nambara, E. Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41, 697-709, 2005.

    Narsai, R., Gouil, Q., Secco, D., Srivastava, A., Karpievitch, Y.V., Liew, L.C., Lister, R., Lewsey, M.G., and Whelan, J. Extensive transcriptomic and epigenomic remodelling occurs during Arabidopsis thaliana germination. Genome Biol 18, 172, 2017.

    Narsai, R., Law, S.R., Carrie, C., Xu, L., and Whelan, J. In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis. Plant Physiol 157, 1342-1362, 2011.

    Nee, G., Xiang, Y., and Soppe, W.J. The release of dormancy, a wake-up call for seeds to germinate. Curr Opin Plant Biol 35, 8-14, 2017.

    Nikolaeva, M., and Polyakova, E. INDOLEACETIC ACID AND OTHER PHYSIOLOGICALLY ACTIVE SUBSTANCES IN FRUIT AND OTHER PLANT SEEDS. Paper presented at: Symposium on Growth Regulators in Fruit Production 80, 1977.

    Okamoto, M., Kuwahara, A., Seo, M., Kushiro, T., Asami, T., Hirai, N., Kamiya, Y., Koshiba, T., and Nambara, E. CYP707A1 and CYP707A2, which encode abscisic acid 8'-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141, 97-107, 2006.

    Pellizzaro, A., Neveu, M., Lalanne, D., Ly Vu, B., Kanno, Y., Seo, M., Leprince, O., and Buitink, J. A role for auxin signaling in the acquisition of longevity during seed maturation. New Phytol 225, 284-296, 2020.

    Pereira Lima, J.J., Buitink, J., Lalanne, D., Rossi, R.F., Pelletier, S., da Silva, E.A.A., and Leprince, O. Molecular characterization of the acquisition of longevity during seed maturation in soybean. PLoS One 12, e0180282, 2017.
    Piskurewicz, U., Jikumaru, Y., Kinoshita, N., Nambara, E., Kamiya, Y., and Lopez-Molina, L. The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20, 2729-2745, 2008.

    Popova, A.V., Rausch, S., Hundertmark, M., Gibon, Y., and Hincha, D.K. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying. Biochim Biophys Acta 1854, 1517-1525, 2015.

    Preston, J., Tatematsu, K., Kanno, Y., Hobo, T., Kimura, M., Jikumaru, Y., Yano, R., Kamiya, Y., and Nambara, E. Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiol 50, 1786-1800, 2009.

    Qutob, D., Ma, F., Peterson, C.A., Bernards, M.A., and Gijzen, M. Structural and permeability properties of the soybean seed coat. Botany 86, 219-227, 2008.

    Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., and Job, D. Seed germination and vigor. Annu Rev Plant Biol 63, 507-533, 2012.

    Ren, M., Venglat, P., Qiu, S., Feng, L., Cao, Y., Wang, E., Xiang, D., Wang, J., Alexander, D., Chalivendra, S., Logan, D., Mattoo, A., Selvaraj, G., and Datla, R. Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. Plant Cell 24, 4850-4874, 2012.

    Righetti, K., Vu, J.L., Pelletier, S., Vu, B.L., Glaab, E., Lalanne, D., Pasha, A., Patel, R.V., Provart, N.J., Verdier, J., Leprince, O., and Buitink, J. Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways. Plant Cell 27, 2692-2708, 2015.

    Rolletschek, H., Radchuk, R., Klukas, C., Schreiber, F., Wobus, U., and Borisjuk, L. Evidence of a key role for photosynthetic oxygen release in oil storage in developing soybean seeds. New Phytol 167, 777-786, 2005.
    Rolston, M.P. Water impermeable seed dormancy. The Botanical Review 44, 365-396, 1978.

    Sallon, S., Solowey, E., Cohen, Y., Korchinsky, R., Egli, M., Woodhatch, I., Simchoni, O., and Kislev, M. Germination, genetics, and growth of an ancient date seed. Science 320, 1464, 2008.

    Salvi, P., Kumar, B., Kamble, N.U., Hazra, A., and Majee, M. A conserved NAG motif is critical to the catalytic activity of galactinol synthase, a key regulatory enzyme of RFO biosynthesis. Biochem J 478, 3939-3955, 2021.

    Sanchez-Montesino, R., Bouza-Morcillo, L., Marquez, J., Ghita, M., Duran-Nebreda, S., Gomez, L., Holdsworth, M.J., Bassel, G., and Onate-Sanchez, L. A Regulatory Module Controlling GA-Mediated Endosperm Cell Expansion Is Critical for Seed Germination in Arabidopsis. Mol Plant 12, 71-85, 2019.

    Sano, N., Rajjou, L., and North, H.M. Lost in Translation: Physiological Roles of Stored mRNAs in Seed Germination. Plants (Basel) 9, 2020.

    Serrato-Valenti, G., Cornara, L., Ferrando, M., and Modenesi, P. Erratum: Structural and histochemical features of Stylosanthes scabra (Leguminosae; Papilionoideae) seed coat as related to water entry. Canadian Journal of Botany 71, 1533-1534, 1993.

    Severin, A.J., Woody, J.L., Bolon, Y.T., Joseph, B., Diers, B.W., Farmer, A.D., Muehlbauer, G.J., Nelson, R.T., Grant, D., Specht, J.E., Graham, M.A., Cannon, S.B., May, G.D., Vance, C.P., and Shoemaker, R.C. RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10, 160, 2010.

    Shanmugabalaji, V., Chahtane, H., Accossato, S., Rahire, M., Gouzerh, G., Lopez-Molina, L., and Kessler, F. Chloroplast Biogenesis Controlled by DELLA-TOC159 Interaction in Early Plant Development. Curr Biol 28, 2616-2623 e2615, 2018.

    Silva, A.T., Ribone, P.A., Chan, R.L., Ligterink, W., and Hilhorst, H.W. A Predictive Coexpression Network Identifies Novel Genes Controlling the Seed-to-Seedling Phase Transition in Arabidopsis thaliana. Plant Physiol 170, 2218-2231, 2016.

    Skubacz, A., Daszkowska-Golec, A., and Szarejko, I. The Role and Regulation of ABI5 (ABA-Insensitive 5) in Plant Development, Abiotic Stress Responses and Phytohormone Crosstalk. Front Plant Sci 7, 1884, 2016.

    Song, S., Willems, L.A.J., Jiao, A., Zhao, T., Eric Schranz, M., and Bentsink, L. The membrane associated NAC transcription factors ANAC060 and ANAC040 are functionally redundant in the inhibition of seed dormancy in Arabidopsis thaliana. J Exp Bot 73, 5514-5528, 2022.

    Sreenivasulu, N., Usadel, B., Winter, A., Radchuk, V., Scholz, U., Stein, N., Weschke, W., Strickert, M., Close, T.J., Stitt, M., Graner, A., and Wobus, U. Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol 146, 1738-1758, 2008.
    Srinivasan, A., Jimenez-Gomez, J.M., Fornara, F., Soppe, W.J., and Brambilla, V. Alternative splicing enhances transcriptome complexity in desiccating seeds. J Integr Plant Biol 58, 947-958, 2016.

    Sun, T.P., and Kamiya, Y. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6, 1509-1518, 1994.

    Thao, N.P., Thu, N.B., Hoang, X.L., Van Ha, C., and Tran, L.S. Differential expression analysis of a subset of drought-responsive GmNAC genes in two soybean cultivars differing in drought tolerance. Int J Mol Sci 14, 23828-23841, 2013.

    Tuan, P.A., Yamasaki, Y., Kanno, Y., Seo, M., and Ayele, B.T. Transcriptomics of cytokinin and auxin metabolism and signaling genes during seed maturation in dormant and non-dormant wheat genotypes. Sci Rep 9, 3983, 2019.

    van Zanten, M., Koini, M.A., Geyer, R., Liu, Y., Brambilla, V., Bartels, D., Koornneef, M., Fransz, P., and Soppe, W.J.J. Seed maturation in <i>Arabidopsis thaliana</i> is characterized by nuclear size reduction and increased chromatin condensation. Proceedings of the National Academy of Sciences 108, 20219-20224, 2011.

    Verdier, J., Lalanne, D., Pelletier, S., Torres-Jerez, I., Righetti, K., Bandyopadhyay, K., Leprince, O., Chatelain, E., Vu, B.L., Gouzy, J., Gamas, P., Udvardi, M.K., and Buitink, J. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiol 163, 757-774, 2013.

    Wang, L., Liu, L., Ma, Y., Li, S., Dong, S., and Zu, W. Transcriptome profilling analysis characterized the gene expression patterns responded to combined drought and heat stresses in soybean. Comput Biol Chem 77, 413-429, 2018.

    Wang, W.Q., Liu, S.J., Song, S.Q., and Moller, I.M. Proteomics of seed development, desiccation tolerance, germination and vigor. Plant Physiol Biochem 86, 1-15, 2015.

    Wang, X., and Komatsu, S. Improvement of Soybean Products Through the Response Mechanism Analysis Using Proteomic Technique. Adv Food Nutr Res 82, 117-148, 2017.

    Werker, E. SEED DORMANCY AS EXPLAINED BY THE ANATOMY OF EMBRYO ENVELOPES. Israel Journal of Botany 29, 22-44, 1980.

    Xu, D., Li, J., Gangappa, S.N., Hettiarachchi, C., Lin, F., Andersson, M.X., Jiang, Y., Deng, X.W., and Holm, M. Convergence of Light and ABA signaling on the ABI5 promoter. PLoS Genet 10, e1004197, 2014.

    Yin, M., Wang, Y., Zhang, L., Li, J., Quan, W., Yang, L., Wang, Q., and Chan, Z. The Arabidopsis Cys2/His2 zinc finger transcription factor ZAT18 is a positive regulator of plant tolerance to drought stress. J Exp Bot 68, 2991-3005, 2017.

    Young, M.D., Wakefield, M.J., Smyth, G.K., and Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11, R14, 2010.

    Zhao, Y., Li, M.C., Konate, M.M., Chen, L., Das, B., Karlovich, C., Williams, P.M., Evrard, Y.A., Doroshow, J.H., and McShane, L.M. TPM, FPKM, or Normalized Counts? A Comparative Study of Quantification Measures for the Analysis of RNA-seq Data from the NCI Patient-Derived Models Repository. J Transl Med 19, 269, 2021.

    Zhuang, Y., Ren, G., Yue, G., Li, Z., Qu, X., Hou, G., Zhu, Y., and Zhang, J. Effects of water-deficit stress on the transcriptomes of developing immature ear and tassel in maize. Plant Cell Rep 26, 2137-2147, 2007.

    無法下載圖示
    2028-07-06公開
    電子論文及紙本論文均尚未授權公開
    QR CODE