| 研究生: |
李柏欣 Li, Po-Hsin |
|---|---|
| 論文名稱: |
(1-x)(Mg0.95Zn0.05)TiO3-xCa0.6La0.8/3TiO3微波介電陶瓷特性之探討與應用 Microwave Dielectric Properties and Applications of (1-x)(Mg0.95Zn0.05)TiO3-xCa0.6La0.8/3TiO3 Ceramics |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 介電 |
| 外文關鍵詞: | dielectric properties, filter |
| 相關次數: | 點閱:61 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討(1-x)Mg0.95Zn0.05TiO3-xCa0.6La0.8/3TiO3(MZCLT)微波介電陶瓷在不同x值時的介電特性。使用液相燒結的方式添加燒結促進劑V2O5促使材料的緻密化,降低MZCLT的燒結溫度。由實驗結果,當x=0.15時,85MZCLT在燒結溫度1320℃持溫4小時下具有良好的微波特性:Q×f值為86000(9GHz), =26,共振頻率溫度係數( )為0.5ppm/℃。添加燒結促進劑V2O5雖然可以降低85MZCLT的燒結溫度,但是整體的介電特性也隨著添加量的增加而有下降變差的情形。另外,以85MZCLT為基板,實作一個二階Butterworth帶通濾波器,中心頻率在2.4GHz並且利用零度饋入方式以及偶合線一端掛上電容性負載結構來產生可調整的零點。最後再實作此濾波器在FR4與Al2O3的基板上來比較與驗證85MZCLT具有良好的溫度穩定性、高介電係數εr及高品質因素(Q×f )。
The microstructures and the microwave dielectric properties of the (1-x)(Mg0.95Zn0.05)TiO3-xCa0.6La0.8/3TiO3 ceramic system were investigated. In order to achieve a temperature-stable material, we studied a method of combining a positive temperature coefficient material with a negative one. Ca0.6La0.8/3TiO3 has dielectric properties of dielectric constant ~ 109, Q × f value ~ 17,600 GHz and a large positive value ~ 213 ppm/oC. (Mg0.95Zn0.05)TiO3 possesses high dielectric constant ( ~ 17), high quality factor (Q × f value ~ 260,000 at 9 GHz) and negative value (-40 ppm/oC). With x = 0.15, a dielectric constant ~ 25.81, a Q × f value ~ 86,000 GHz (at 9 GHz) and a value ~ 0.5 ppm/oC was obtained for 0.85(Mg0.95Zn0.05)TiO3-0.15Ca0.6La0.8/3TiO3 ceramics sintered at 1320oC for 4 h.
In addition, we fabricate a second-order Butterworth band-pass filters with a central frequency of 2.4GHz and a bandwidth of 8% on FR4, Al2O3 and 85MZCLT substrates.
參考文獻
[1] Y. M. Chiang, Birnie Ⅲ, Dunbar P. and David Kingery, W., "Physical Ceramics: Principles for Ceramics Science and Engineering", p.34, John Wiley & Sons, Inc., New York, 1997.
[2] 吳朗,電子陶瓷-介電,PP.268-275,全欣科技圖書,1994.
[3] D.K. Cheng, “Field and Wave Electromagnetics, 2/e”, Addison-wesley, 1989.
[4] D. Kajfez, “Computed model field distribution for isolated dielectric resonator-s,”IEEE. Trans. Microwave Theory Tech.,” vol. MTT-32, pp.1609-1616, Dec. 1984.
[5] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave System News., vol. 13, pp. 152-161, 1983.
[6] D. Kajfez, and P. Guillon, “Dielectric resonators,” New York: Artech House,1989.
[7] D. Y. Lee, S. J. Yoon, J. H. Yeo, S. Nahm, J. H. Paik, K. C. Whang, B. G.. Ahn, “Crystal structure and microwave dielectric properties of La(Mg1/2Ti1/2)O3 ceramics,” Journal of Materials Science Letters, vol. 19, pp.131-134, 2000.
[8] M. Avdeev, M. P.Seabra, V. M. Ferreira, “Synthesis of La(Mg1/2Ti1/2)O3 ceramics for microwave applications,” Materials Research Bulletin, vol. 37 pp.255-262, 2002.
[9] M. Avdeev, M. P. Seabra and V. M. Ferreira, “Structure evolution in La(Mg1/2Ti1/2)O3–SrTiO3 system, ”Materials Research Bulletin, vol. 37, pp.1459-1468, 2003.
[10] M. Avdeev, M. P. Seabra, V. M. Ferreira, R. C. Pullar, N. M. Alford, “Structure and microwave dielectric properties of La(Mg1/2Ti1/2)O3–CaTiO3 system,” Journal of the European Ceramic Society, vol. 23, pp.2403-2408, 2003.
[11] A. N. Salak, M. P. Seabra, V. M. Ferreira, “La(Mg1/2Ti1/2)O3-La2/3TiO3 microwave dielectric ceramics,” Journal of the European Ceramic Society, vol. 23, pp.2409-2412, 2003.
[12] M. P. Seabra, A N Salak, M. Avdeev, V. M. Ferreira, “Structure and dielectric characterization of the La(Mg1/2Ti1/2)O3–Nd(Mg1/2Ti1/2)O3 system,” Journal of Physics: Condensed Matter, vol. 15, pp.4229-4238, 2003.
[13] M. Avdeev, M. P. Seabra, V. M. Ferreira, “Crystal structure of dielectric ceramics in the La(Mg1/2Ti1/2)O3–BaTiO3 system,” Journal of Materials Research, vol. 17, No. 5, pp.1112-1117, May 2005.
[14] A. M. GLAZER, Acta Cryst. A31, pp.756, 1975.
[15]. E. L. COLLA, I. M. REANEY and N. SETTER, Journal of Applied Physics, vol. 74 , pp.3414, 1993.
[16] A. Meden and M. Ceh, Material Science Forum, vol. 773, pp.278-281, 1993.
[17] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期 90年8月
[18] L. A. Trinogga, Guo Kaizhou, and I. C. Hunter, Practical microstrip circuit design., UK: Ellis Horwood, 1991.
[19] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
[20] E. O. Hammerstard, in Proceedings of the european microwave conference., pp. 268-272, 1975.
[21] E. J. Denlinger, “Losses of microstrip lines,” IEEE. Trans. Microwave Theory Tech., vol. MIT-28, pp. 513–522, Jun. 1980
[22] David M. Pozar, Microwave engineering., Reading: Addison-Wesley, 1998
[23] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
[24] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance- mattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
[25] V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. Microwave Theory Te- ch., vol. MTT-20, pp. 573-578, Sep. 1980.
[26] 張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
[27] J. S. Hong, and M. J. Lancaster, “Couplings of microstrip square open-loop r-esonators for cross-coupled planar microwave filters,” IEEE Trans. MicrowaveTheory Tech., vol. 44, pp. 2099-2109, Nov. 1996.
[28] T. Edwards, Foundations for microstrip circuit design, second edition., UK: Wiley, 1991.
[29] R. Garg and I. J. Bahl, “Characteristics of coupled microstriplines,” IEEE Trans., MTT-27, July 1979, 700–705. Corrections in IEEE Trans., MTT-28, pp.272, March 1980.
[30] M. Kirschning and R. H. Jansen, “Accurate wide-range design equations for
parallel coupled microstrip lines,” IEEE Trans., MTT-32, pp.83-90, Jan. 1984.
Corrections in IEEE Trans., MTT-33, p. 288, March 1985.
[29] J. S. Hong, and M. J. Lancaster, “Microstrip square open-loop r-esonators for cross-coupled planar microwave filters Filter for RF/Microwave Application,” IEEE Trans. MicrowaveTheory Tech., vol. 44, pp. 2099-2109, New York: Wiley, 2001.
[30] C. M. Tsai, S. Y. Lee, C. C. Tasi, “Performance of a planar filter using a 0° feed structure,” IEEE Trans. Microwave Theory Tech., vol. MTT-50, No. 10, pp. 2362-2367, Oct. 2002.
[31] T. Edwards, Foundations for Microstrip Circuit Design,2nd ed. New York: Wiley, 1992,ch. 5.
[32] J. S. Wang, “Microstrip tapped-line filter design,” IEEE Trans. Microwave Theory Tech., vol. MTT-27, pp. 44-50, Jan. 1979.
[33] C. M. Tsai, S. Y. Lee, H. M. Lee, “Transmission-line filters with Capacitively loaded coupled lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-51, No. 5, pp. 1517-1524, May 2003.
[34] P. Wheless, and D. Kajfez “The use of higher resonant modes in measuring the dialectric constant of Dielectric Resonators,” IEEE MTT-S Symposium Dig., pp. 473-476, 1985.
[35] Y. Kobayashi, and N. Katoh, “Microwave measurement of dielectric properties of low-loss materials by dielectric rod resonator method,” IEEE Trans. Micr- owave Theory Tech., vol. MTT-33, pp. 586-592, 1985.
[36] Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE. Trans. MicrowaveTheory Tech., vol. MTT-28, pp. 1077-1085, 1980.
[37] B. W. Hakki, and P. D. Coleman, “A dielectric resonator method of measure-ng inductive capacities in the millimeter range,” IEEE. Trans. Microwave Theory Tech., vol. MTT-8, pp. 402-410, 1960
[38] I. S. Kim, W. H. Jung, Y. Inaguma, T. Nakamura and M. Itoh: Mat. Res. Bull. 30 (1995) 307.
[39] C. L. Huang, J. T. Tsai and Y. B. Chen: Mater. Res. Bull. 36 (2001) 547.
[40] H. T. Kim, J. D. Byun and Y. Kim: Mater. Res. Bull. 33 (1998) 975.
[41] M. L. Hsieh, L. S. Chen, S. M. Wang, C. H. Sun, M. H. Weng, M. P. Houng and S. L. Fu: Jpn. J. Appl. Phys. 44 (2005) 5045.
[42] H. T. Kim, S. Nahm and J. D. Byun: J. Am. Ceram. Soc. 82 (1999) 3476.