| 研究生: |
鄭乃綺 Cheng, Nai-Chi |
|---|---|
| 論文名稱: |
利用金-亞甲基藍奈米複合材料促進傳遞光動力治療於有氧和無氧環境中的抗癌細胞與抗菌生長 Enhanced photodynamic therapy delivery of Au-methylene blue nanohybrids for efficient antibacterial and anti-cancer treatments in the normoxia and hypoxia environments |
| 指導教授: |
黃志嘉
Huang, Chih-Chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 金奈米粒子 、亞甲基藍 、光動力治療 、常氧 、缺氧 、抗癌 、抗菌 |
| 外文關鍵詞: | gold nanoparticle, methylene blue, Type I/II PDT, normoxia, hypoxia, anti-cancer, antibacterial |
| 相關次數: | 點閱:63 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透過控制前驅物金鹽、單寧酸、亞甲基藍莫耳數以調節生成奈米粒子之尺寸及形狀,以製作出具有不同光學活性的奈米粒子。藉由簡便且綠色的合成方法製作出金奈米粒子作為藥物載體。靠著前驅物之間生成的作用力,以大量攜載亞甲基藍藥物於金奈米粒子表面。尺寸較大的金奈米粒子具有較優異的表面增強拉曼散射能力。合成中添加的亞甲基藍大部分可吸附在金奈米粒子上,如此,吸附上的亞甲基藍可同時具有單體及二聚體的型態以增進了單態氧(type II)及氫氧自由基的生成(type I)。相似的合成方法也被用來生成Au@MB-Ce6奈米粒子應用於生物螢光成像。除此之外,也分析了複合上亞甲基藍後的金奈米粒子光學特性,特別針對拉曼光譜進行研究。金奈米粒子有效提升亞甲基藍的拉曼訊號促使治療和診斷結合的可能性。亞甲基藍-金奈米粒子與穀胱甘肽水溶液培養後,仍可有效地生成氫氧自由基以改善缺氧環境下的光動力治療效果。經穀胱甘肽水溶液培養後,亞甲基藍釋放的情形可以透過拉曼以及螢光影像進行監控。亞甲基藍-金奈米粒子搭配660 nm的光照可以有效生成活性氧化物質,進而導致惡性癌細胞凋亡。藉由進一步修飾小分子於粒子表面可提升且加速粒子於惡性癌細胞的累積量,以達到提升光動力治療效果及生物影像品質。
關鍵字: 金奈米粒子、亞甲基藍、光動力治療、常氧、缺氧、抗癌、抗菌
In this work, we modulate the concentration of precursors (HAuCl4, TNA and MB) to control of particle size and shape becomes particularly important to offer the desirable applications which required optical functions (Au/TNA/MB assembles). We hope to manufacture gold nanoparticles (Au NPs) as carriers of MB, which could load a large amount of MB via molecular interactions between precursors. The size and shape of the Au@TNA/MB were controllable by adjusting the different mole ratio of the reagents. The smaller size of the Au NPs reduced by TNA generated weak SERS effect, while a promotion of SERS was relied on the formation of bigger size for Au NPs as a SERS enhancer. As an increase of MB concentrations co-assembled onto the surface of Au NPs, we found the improvement of the 1O2 generation (type II) as well as the yield of the OH radical (·OH) in type I process. The similar synthesis method could be extended to fabricate Au@MB-Ce6 NPs for fluorescent bioimaging. In contrast, the integration of Au@MB NPs on the field of SERS, the drug releasement under high concentration GSH in vitro, PDT, and ligand targeting was also investigated. The improvement of SERS feature was found in the Au@MB NPs, leading the combination of therapy and diagnostic. After incubated with GSH solution, MB molecules releasing from the surface of Au@MB NPs parts of MB molecules were estimated still be dimer form and could generate ·OH and eventually elevate the PDT efficiency under hypoxia. The distribution of MB molecules after treating with GSH was monitored via the simultaneous fluoresce and Raman mapping images. The ROS generation of Au@MB NPs with the explosion of 660 nm laser (125 mW/cm2) induced the cell toxicity, leading to the apoptosis and death of cancer cells. We further modified ligands on Au@MB NPs to enhance the accumulation of nanoparticles to the cancer cells in short time. Au@MB NPs were incubated with cancer cells and monitored via fluoresce and Raman images. With the longer incubation time, the Raman intensity would decrease and the red fluorescence of MB would increase by four times.
Key word: gold nanoparticle, methylene blue, Type I/II PDT, normoxia, hypoxia, anti-cancer, antibacterial
1. M. Daglia, Curr. Opin. Biotechnol., 2012, 23, 174-181.
2. Y. Wang, J. Li and B. Li, J. Agric. Food. Chem., 2016, 64, 5736-5741.
3. M. V. Lomova, A. I. Brichkina, M. V. Kiryukhin, E. N. Vasina, A. M. Pavlov, D. A. Gorin, G. B. Sukhorukov and M. N. Antipina, ACS Appl. Mater. Interfaces, 2015, 7, 11732-11740.
4. J. Guo, Y. Ping, H. Ejima, K. Alt, M. Meissner, J. J. Richardson, Y. Yan, K. Peter, D. von Elverfeldt and C. E. Hagemeyer, Angew. Chem. Int. Ed., 2014, 53, 5546-5551.
5. F. Liu, V. Kozlovskaya, O. Zavgorodnya, C. Martinez-Lopez, S. Catledge and E. Kharlampieva, Soft matter, 2014, 10, 9237-9247.
6. M. A. Rahim, H. Ejima, K. L. Cho, K. Kempe, M. Müllner, J. P. Best and F. Caruso, Chem. Mater., 2014, 26, 1645-1653.
7. H. Ejima, J. J. Richardson, K. Liang, J. P. Best, M. P. van Koeverden, G. K. Such, J. Cui and F. Caruso, Science, 2013, 341, 154-157.
8. Y. Piao, J. Kim, H. B. Na, D. Kim, J. S. Baek, M. K. Ko, J. H. Lee, M. Shokouhimehr and T. Hyeon, Nat. mater., 2008, 7, 242-247.
9. G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han and X. Liu, Nat. chem., 2012, 4, 310-316.
10. Y.-J. Wang, N. Zhao, B. Fang, H. Li, X. T. Bi and H. Wang, Chem. Rev., 2015, 115, 3433-3467.
11. K. D. Gilroy, A. Ruditskiy, H.-C. Peng, D. Qin and Y. Xia, Chem. Rev., 2016, 116, 10414-10472.
12. B.-J. Liu, K.-Q. Lin, S. Hu, X. Wang, Z.-C. Lei, H.-X. Lin and B. Ren, Anal. Chem., 2014, 87, 1058-1065.
13. R. R. Costa and J. F. Mano, Chem. Soc. Rev., 2014, 43, 3453-3479.
14. C. He, X. Duan, N. Guo, C. Chan, C. Poon, R. R. Weichselbaum and W. Lin, Nat. commun., 2016, 7, 12499-12511.
15. L. Zhu, X. Li, S. Wu, K. T. Nguyen, H. Yan, H. Ågren and Y. Zhao, JACS, 2013, 135, 9174-9180.
16. Y. Fukui and K. Fujimoto, Chem. Mater., 2011, 23, 4701-4708.
17. Y. Takemoto, H. Ajiro and M. Akashi, Langmuir, 2015, 31, 6863-6869.
18. Y. Wang, Y. Zhang, C. Hou, F. He and M. Liu, New J. Chem., 2016, 40, 781-788.
19. T. Zeng, X. Zhang, Y. Guo, H. Niu and Y. Cai, Journal of Materials Chemistry A, 2014, 2, 14807-14811.
20. J. J. Richardson, M. Björnmalm and F. Caruso, Science, 2015, 348, aaa2491.
21. P. T. Anastas and J. C. Warner, Green chemistry: theory and practice, Oxford university press, 2000.
22. T. Kim, J. Silva, M. Kim and Y. Jung, Food Chem., 2010, 118, 740-746.
23. H. Hayatsu, S. Arimoto and T. Negishi, Mutat. Res-Fund. Mol. M., 1988, 202, 429-446.
24. S. Wiseman, T. Mulder and A. Rietveld, Antioxid. Redox Signal., 2001, 3, 1009-1021.
25. E. A. Untener, K. K. Comfort, E. I. Maurer, C. M. Grabinski, D. A. Comfort and S. M. Hussain, ACS Appl. Mater. Interfaces, 2013, 5, 8366-8373.
26. Y. Bian, A. Masuda, T. Matsuura, M. Ito, K. Okushin, A. G. Engel and K. Ohno, Hum. Mol. Gen., 2009, 18, 1229-1237.
27. E. Costa, M. Coelho, L. M. Ilharco, A. Aguiar-Ricardo and P. T. Hammond, Macromolecules, 2011, 44, 612-621.
28. T. Shutava, M. Prouty, D. Kommireddy and Y. Lvov, Macromolecules, 2005, 38, 2850-2858.
29. V. Kozlovskaya, E. Kharlampieva, I. Drachuk, D. Cheng and V. V. Tsukruk, Soft Matter, 2010, 6, 3596-3608.
30. G. Paramasivam, M. Vergaelen, M.-R. Ganesh, R. Hoogenboom and A. Sundaramurthy, J. Mater. Chem. B, 2017, 5, 8967-8974.
31. Y. Ping, J. Guo, H. Ejima, X. Chen, J. J. Richardson, H. Sun and F. Caruso, Small, 2015, 11, 2032-2036.
32. H. Liang, Y. Pei, J. Li, W. Xiong, Y. He, S. Liu, Y. Li and B. Li, RSC Adv., 2016, 6, 31374-31385.
33. D. Payra, M. Naito, Y. Fujii and Y. Nagao, Chem. Commun., 2016, 52, 312-315.
34. H. J. Kim, D. G. Kim, H. Yoon, Y. S. Choi, J. Yoon and J. C. Lee, Adv. Mater. Interfaces, 2015, 2, 1500298.
35. X. Yao, X. Zheng, J. Zhang and K. Cai, RSC Adv., 2016, 6, 76473-76481.
36. H. Liang, J. Li, Y. He, W. Xu, S. Liu, Y. Li, Y. Chen and B. Li, ACS Biomater. Sci. & Eng., 2016, 2, 317-325.
37. Y. Dai, Z. Yang, S. Cheng, Z. Wang, R. Zhang, G. Zhu, Z. Wang, B. C. Yung, R. Tian and O. Jacobson, Adv. Mater., 2018, 30, 1704877.
38. J. Martínez-Esaín, J. Faraudo, T. Puig, X. Obradors, J. Ros, S. Ricart and R. Yáñez, J. Am. Chem. Soc., 2018, 140, 2127-2134.
39. X. R. Song, S. H. Li, J. Dai, L. Song, G. Huang, R. Lin, J. Li, G. Liu and H. H. Yang, small, 2017, 13, 1603997.
40. T. S. Sileika, D. G. Barrett, R. Zhang, K. H. A. Lau and P. B. Messersmith, Angew. Chem., 2013, 125, 10966-10970.
41. H. Y. Yang, M.-S. Jang, Y. Li, J. H. Lee and D. S. Lee, ACS Appl. Mater. Interfaces, 2017, 9, 19184-19192.
42. L. Dykman and N. Khlebtsov, Chem. Soc. Rev., 2012, 41, 2256-2282.
43. P. M. Tiwari, K. Vig, V. A. Dennis and S. R. Singh, Nanomaterials, 2011, 1, 31-63.
44. D. Cabuzu, A. Cirja, R. Puiu and A. Mihai Grumezescu, Curr. Top. Med. Chem., 2015, 15, 1605-1613.
45. T. Zheng, Y. Y. L. Sip, M. B. Leong and Q. Huo, Colloids Surf. B Biointerfaces, 2018, 164, 185-191.
46. Q.-J. Hu, Y.-C. Lu, C.-X. Yang and X.-P. Yan, Chem. Commun., 2016, 52, 5470-5473.
47. J. Fei, J. Zhao, C. Du, A. Wang, H. Zhang, L. Dai and J. Li, ACS nano, 2014, 8, 8529-8536.
48. Y. Cao, R. Zheng, X. Ji, H. Liu, R. Xie and W. Yang, Langmuir, 2014, 30, 3876-3882.
49. X.-L. Zhang, C. Zheng, Y. Zhang, H.-H. Yang, X. Liu and J. Liu, J. Nanopart. Res., 2016, 18, 174-186.
50. M. Usacheva, S. K. Swaminathan, A. R. Kirtane and J. Panyam, Mol. pharm., 2014, 11, 3186-3195.
51. J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. de Fátima Turchiello and M. S. Baptista, Photodiagnosis photodyn. Ther., 2005, 2, 175-191.
52. P. Tafulo, R. Queirós and G. González-Aguilar, Spectrochim. Acta A: Mol. and Biomol. Spectrosc., 2009, 73, 295-300.
53. Q. Zhang, T. Atay, J. R. Tischler, M. S. Bradley, V. Bulović and A. Nurmikko, Nat. nanotechnol., 2007, 2, 555-559.
54. J. Rieger and D. Horn, Angew. Chem. Int. Ed, 2001, 40, 4330-4361.
55. G. Pescitelli, L. Di Bari and N. Berova, Chem. Soc. Rev., 2014, 43, 5211-5233.
56. S. A. Aromal and D. Philip, Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1692-1696.
57. N. Ahmad, S. Sharma, M. K. Alam, V. Singh, S. Shamsi, B. Mehta and A. Fatma, Colloids Surf. B Biointerfaces, 2010, 81, 81-86.
58. J. Seherer, Eur. J. Org. Chem., 1841, 40, 1-64.
59. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, JNCI, 1998, 90, 889-905.
60. D. E. Dolmans, D. Fukumura and R. K. Jain, Nat. rev. cancer, 2003, 3, 380-387.
61. J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue and T. Hasan, Chem. Rev., 2010, 110, 2795-2838.
62. Z. S. Silva, S. K. Bussadori, K. P. S. Fernandes, Y.-Y. Huang and M. Hamblin, Biosci. Rep., 2015, BSR20150188.
63. A. Valencia and J. Morán, Free Radical Biol. Med., 2004, 36, 1112-1125.
64. B. W. Pogue, R. D. Braun, J. L. Lanzen, C. Erickson and M. W. Dewhirst, Photochem. Photobiol., 2001, 74, 700-706.
65. J. E. Moulder and S. Rockwell, Cancer metast.s rev., 1987, 5, 313-341.
66. E. F. Silva, C. Serpa, J. M. Dąbrowski, C. J. Monteiro, S. J. Formosinho, G. Stochel, K. Urbanska, S. Simões, M. M. Pereira and L. G. Arnaut, Chem. Eur. J., 2010, 16, 9273-9286.
67. Y. Vakrat-Haglili, L. Weiner, V. Brumfeld, A. Brandis, Y. Salomon, B. Mcllroy, B. C. Wilson, A. Pawlak, M. Rozanowska and T. Sarna, J. Am. Chem. Soc., 2005, 127, 6487-6497.
68. D. Gabrielli, E. Belisle, D. Severino, A. J. Kowaltowski and M. S. Baptista, Photochem. Photobiol., 2004, 79, 227-232.
69. A. B. Ormond and H. S. Freeman, Materials, 2013, 6, 817-840.
70. J. Yu, C.-H. Hsu, C.-C. Huang and P.-Y. Chang, ACS Appl. Mater. Interfaces, 2014, 7, 432-441.
71. J. Lv, G. Wu, Y. He, L. Zhang and Y. Yi, Opt.Mater. Express, 2017, 7, 409-414.
72. S.-H. Seo, B.-M. Kim, A. Joe, H.-W. Han, X. Chen, Z. Cheng and E.-S. Jang, Biomaterials, 2014, 35, 3309-3318.
73. Z. Huang, H. Xu, A. D. Meyers, A. I. Musani, L. Wang, R. Tagg, A. B. Barqawi and Y. K. Chen, Technol. Cancer Res. T. Journal, 2008, 7, 309-320.
74. Y. Zhang, J. Environ. Sci. Health., Part C, 2013, 31, 287-304.
75. C. D. Andl, T. Mizushima, H. Nakagawa, K. Oyama, H. Harada, K. Chruma, M. Herlyn and A. K. Rustgi, J. Biol. Chem., 2003, 278, 1824-1830.
76. T.-C. Liu, X. Jin, Y. Wang and K. Wang, Am. J. Cancer Res., 2017, 7, 187-202.
77. P. Huang, X. Xu, L. Wang, B. Zhu, X. Wang and J. Xia, J. Cell. Mol. Med., 2014, 18, 218-230.
78. F. Zhang, S. Wang, L. Yin, Y. Yang, Y. Guan, W. Wang, H. Xu and N. Tao, Anal. Chem., 2015, 87, 9960-9965.
79. R. Railkar, L. S. Krane, Q. Q. Li, T. Sanford, M. R. Siddiqui, D. Haines, S. Vourganti, S. J. Brancato, P. L. Choyke and H. Kobayashi, Mol. Cancer Ther., 2017, 16, 2201-2214.
80. S. T. Xu, C. Guo, X. Ding, W. J. Fan, F. H. Zhang, W. L. Xu and Y. C. Ma, Mol. Med. Rep., 2015, 11, 3701-3707.
81. S. Xu, B. Z. Olenyuk, C. T. Okamoto and S. F. Hamm-Alvarez, Adv. Drug Deliv. Rev., 2013, 65, 121-138.
82. J. Ledermann, S. Canevari and T. Thigpen, Ann. Oncol., 2015, 26, 2034-2043.
83. G. L. Zwicke, G. Ali Mansoori and C. J. Jeffery, Nano Rev., 2012, 3, 18496.
84. Y. Wang, W. Liang and C. Geng, Nanoscale Res. Lett., 2009, 4, 684-688.
85. W. Haiss, N. T. Thanh, J. Aveyard and D. G. Fernig, Anal. Chem., 2007, 79, 4215-4221.
86. E. Tanaka, F. Y. Chen, R. Flaumenhaft, G. J. Graham, R. G. Laurence and J. V. Frangioni, J. Thorac. Cardiovasc. Surg., 2009, 138, 133-140.
87. F. Würthner, T. E. Kaiser and C. R. Saha‐Möller, Angew. Chem. Int. Ed., 2011, 50, 3376-3410.
88. S. R. Vijayan, P. Santhiyagu, M. Singamuthu, N. Kumari Ahila, R. Jayaraman and K. Ethiraj, The Scientific World Journal, 2014, 2014.
89. S. S. Shankar, A. Rai, A. Ahmad and M. Sastry, J. Colloid Interface Sci., 2004, 275, 496-502.
90. S. Cumberland and G. Strouse, Langmuir, 2002, 18, 269-276.
91. B. Ahmmad, J. Kurawaki, K. Leonard and Y. Kusumoto, J. Sci. Res., 2010, 2, 495-500.
92. M. Sanchez-Arenillas, S. Galvez-Martinez and E. Mateo-Marti, Appl. Surf. Sci., 2017, 414, 303-312.
93. I. Kraljić and S. E. Mohsni, Photochem. Photobiol., 1978, 28, 577-581.
94. S. Elmore, Toxicol. Pathol., 2007, 35, 495-516.
95. M. D. Sachs, K. A. Rauen, M. Ramamurthy, J. L. Dodson, A. M. De Marzo, M. J. Putzi, M. P. Schoenberg and R. Rodriguez, Urology, 2002, 60, 531-536.
96. G. van der Horst, L. Bos, M. van der Mark, H. Cheung, B. Heckmann, P. Clément-Lacroix, G. Lorenzon, R. C. Pelger, R. F. Bevers and G. van der Pluijm, PloS one, 2014, 9, e108464.
97. J. G. Steele, C. Rowlatt, J. K. Sandall and L. M. Franks, BBA-Biomembranes, 1983, 732, 219-228.
98. X. Wang, N. Xia and L. Liu, Int. J. Mol. Sci., 2013, 14, 20890-20912.
99. A. D Friedman, S. E Claypool and R. Liu, Curr. Pharm. Des., 2013, 19, 6315-6329.
100. J. C. Barreto, G. S. Smith, N. H. Strobel, P. A. McQuillin and T. A. Miller, Life Sci., 1994, 56, PL89-PL96.
101. T. Mason, J. Lorimer, D. Bates and Y. Zhao, Ultrason. Sonochem., 1994, 1, S91-S95.
102. A. Riemann, H. Wußling, H. Loppnow, H. Fu, S. Reime and O. Thews, BBA-Molecular Basis of Disease, 2016, 1862, 72-81.
103. H. S. Qian, H. C. Guo, P. C. L. Ho, R. Mahendran and Y. Zhang, Small, 2009, 5, 2285-2290.
104. C. O'May and N. Tufenkji, Appl. Environ. Microbiol., 2011, 77, 3061-3067.
105. E. Leifson, J. Bacteriol., 1951, 62, 377-389.
106. J. Zeng, W. Yang, D. Shi, X. Li, H. Zhang and M. Chen, ACS Biomater. Sci. Eng., 2018, 4, 963-972.
107. Y. Yang, Y. Hu, H. Du, L. Ren and H. Wang, Int. J. Nanomedicine, 2018, 13, 2065-2078.
108. J. Choi, S. E. Lee, J. S. Park and S. Y. Kim, Biotechnol. Bioeng., 2018, 115, 1340-1354.
109. M. Lee, H. Lee, N. V. Rao, H. S. Han, S. Jeon, J. Jeon, S. Lee, S. Kwon, Y. D. Suh and J. H. Park, J. Mater. Chem. B, 2017, 5, 7319-7327.
110. M. E. Wieder, D. C. Hone, M. J. Cook, M. M. Handsley, J. Gavrilovic and D. A. Russell, Photochem. Photobiol. Sci., 2006, 5, 727-734.
111. T. Park, S. Lee, G. H. Seong, J. Choo, E. K. Lee, Y. S. Kim, W. H. Ji, S. Y. Hwang, D.-G. Gweon and S. Lee, Lab on a Chip, 2005, 5, 437-442.
112. M. Fleischmann, P. J. Hendra and A. J. McQuillan, Chem. Phys. Lett., 1974, 26, 163-166.
113. L. Guerrini and D. Graham, Chem. Soc. Rev., 2012, 41, 7085-7107.
114. D. L. Jeanmaire and R. P. Van Duyne, Journal of electroanalytical chemistry and interfacial electrochemistry, 1977, 84, 1-20.
115. H. Xu, J. Aizpurua, M. Käll and P. Apell, Phys. Rev. E, 2000, 62, 4318-4324.
116. K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh and C. L. Haynes, Phys. Chem. Chem. Phys, 2011, 13, 11551-11567.
117. M. Shaban and A. Galaly, Sci.Rep., 2016, 6, 25307-25315.
118. W. E. Doering and S. Nie, J. Phys. Chem. B, 2002, 106, 311-317.
119. D.-Y. Wu, L.-B. Zhao, X.-M. Liu, R. Huang, Y.-F. Huang, B. Ren and Z.-Q. Tian, Chem. Commun., 2011, 47, 2520-2522.
120. D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino and W. Moerner, J. Chem. Phys., 2006, 124, 061101.
121. E. J. Blackie, E. C. L. Ru and P. G. Etchegoin, J. Am. Chem. Soc., 2009, 131, 14466-14472.
122. R. Aroca, Surface-Enhanced Vibrational Spectroscopy, John Wiley & Sons, Ltd., UK pp. 73–106, 2006.
123. Y. Zhang, H. Hong, D. V. Myklejord and W. Cai, Small, 2011, 7, 3261-3269.
124. S. J. Lee, Z. Guan, H. Xu and M. Moskovits, J. Phys. Chem. C, 2007, 111, 17985-17988.
125. G. Das, R. Chakraborty, A. Gopalakrishnan, D. Baranov, E. Di Fabrizio and R. Krahne, J. Nanopart. Res., 2013, 15, 1596-1605.
126. N. D. Israelsen, C. Hanson and E. Vargis, The Scientific World Journal, 2015, 2015.
127. B. Kennedy, S. Spaeth, M. Dickey and K. Carron, J. Phys. Chem. B, 1999, 103, 3640-3646.
128. V. Kukushkin, A. B. Van’kov and I. V. Kukushkin, JETP letters, 2013, 98, 64-69.
129. S. S. Masango, R. A. Hackler, N. Large, A.-I. Henry, M. O. McAnally, G. C. Schatz, P. C. Stair and R. P. Van Duyne, Nano Lett., 2016, 16, 4251-4259.
130. J. Kumar and K. G. Thomas, J. Phys. Chem. Lett., 2011, 2, 610-615.
131. G. Sonavane, K. Tomoda and K. Makino, Colloids Surf. B Biointerfaces, 2008, 66, 274-280.
132. K. Čermáková, O. Šesták, P. Matějka, V. Baumruk and B. Vlčková, Collect. Czech. Chem. Commun., 1993, 58, 2682-2694.
133. T. Santiago, R. S. DeVaux, K. Kurzatkowska, R. Espinal, J. I. Herschkowitz and M. Hepel, Int J Nanomedicine, 2017, 12, 7763-7776.
134. D. Long, J Neurosurg, 1977, 46, 501-505.
135. M. Moskovits, Rev. Mod. Phys., 1985, 57, 783-826.
136. J. Xie, S. Lee and X. Chen, Adv. Drug. Deliv. Rev., 2010, 62, 1064-1079.
137. W.-H. Chen, Q. Lei, G.-F. Luo, H.-Z. Jia, S. Hong, Y.-X. Liu, Y.-J. Cheng and X.-Z. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 17171-17180.
138. M. H. Lee, J. L. Sessler and J. S. Kim, Acc. Chem. Res. 2015, 48, 2935-2946.
139. A. M. Fales, H. Yuan and T. Vo-Dinh, Langmuir, 2011, 27, 12186-12190.
140. Y. Zhang, J. Qian, D. Wang, Y. Wang and S. He, Angew. Chem. Int. Ed., 2013, 52, 1148-1151.
141. H. Laroui, P. Rakhya, B. Xiao, E. Viennois and D. Merlin, Digest. Liver. Dis. 2013, 45, 995-1002.
142. S. M. Janib, A. S. Moses and J. A. MacKay, Adv. Drug Deliv. Rev., 2010, 62, 1052-1063.
143. A. Fernandez-Fernandez, R. Manchanda and A. J. McGoron, Appl. Biochem. Biotechnol., 2011, 165, 1628-1651.
144. C. Li, Y. Huang, K. Lai, B. A. Rasco and Y. Fan, Food Control, 2016, 65, 99-105.
145. X. Xu, H. Li, D. Hasan, R. S. Ruoff, A. X. Wang and D. Fan, Adv. Funct. Mater., 2013, 23, 4332-4338.
146. U. Kreibig and M. Vollmer, in Optical properties of metal clusters, Springer, 1995, pp. 13-201.
147. X. R. Song, S. H. Li, J. Dai, L. Song, G. Huang, R. Lin, J. Li, G. Liu and H. H. Yang, Small, 2017, 13.
148. G. Galati, A. Lin, A. M. Sultan and P. J. O'brien, Free Radical Biol. Med., 2006, 40, 570-580.
149. C. Dezarnaud, M. Tronc and A. Hitchcock, Chem. Phys., 1990, 142, 455-462.
150. T. Steiner, Angew. Chem. Int. Ed., 2002, 41, 48-76.
151. T. Ishida, N. Choi, W. Mizutani, H. Tokumoto, I. Kojima, H. Azehara, H. Hokari, U. Akiba and M. Fujihira, Langmuir, 1999, 15, 6799-6806.
152. M. P. Gamcsik, M. S. Kasibhatla, S. D. Teeter and O. M. Colvin, Biomarkers, 2012, 17, 671-691.
153. J. Huang, Y. Yin, H. Huang, Q. Zhang and T. Hang, Chin. Pharm. J., 2009, 44, 1108-1111.
154. J. I. Gersten and A. Nitzan, Surf. Sci., 1985, 158, 165-189.
155. S. K. Ghosh, A. Pal, S. Kundu, S. Nath and T. Pal, Chem. Phys. Lett., 2004, 395, 366-372.
156. S. Chowdhury, Z. Wu, A. Jaquins-Gerstl, S. Liu, A. Dembska, B. A. Armitage, R. Jin and L. A. Peteanu, J. Phys. Chem C, 2011, 115, 20105-20112.
157. G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani and T. Liedl, ACS nano, 2012, 6, 3189-3195.
158. J. Yue, T. J. Feliciano, W. Li, A. Lee and T. W. Odom, Bioconjugate Chem., 2017, 28, 1791-1800.
159. G. P. Drummen, L. C. van Liebergen, J. A. O. den Kamp and J. A. Post, Free Radic. Biol. Med., 2002, 33, 473-490.