| 研究生: |
李孟涵 Li, Meng-Han |
|---|---|
| 論文名稱: |
消費性產品及水環境中二氧化鈦和氧化鋅奈米顆粒分析與調查研究 Direct Analysis and Monitoring Distribution of Nanoparticulate TiO2 and ZnO in Consumer Products and Environmental Waters |
| 指導教授: |
侯文哲
Hou, Wen-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 單顆粒式感應耦合電漿質譜儀 、奈米顆粒 、消費性產品 、水環境 |
| 外文關鍵詞: | spICP-MS, nanoparticles, consumer product, aqueous environment |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米技術的快速發展使得市場上奈米消費產品的數量顯著增加。其中,TiO2和ZnO奈米顆粒是常用於防曬劑和化妝品中的UV反射劑,但有許多奈米物質商品並未有明確的標示,且對安全風險評估的需求日益增加。此外,在產品使用期間奈米顆粒釋放到水環境(如廢水、河流和湖泊)中的宿命需要進行調查。
本研究的目的在於開發以單顆粒式感應耦合電漿質譜儀方法來直接分析市售防曬和化妝品中TiO2和ZnO的奈米顆粒大小、元素組成和濃度。選定的五個市售產品會以親/疏水的特性分類並使用不同的Triton X-100配方來分散樣品,由此方法分析得到的粒徑與穿透式電子顯微鏡的鑑定結果相當接近,其中四個產品所含的TiO2皆為奈米級顆粒,而ZnO則以大於100奈米的聚集體存於防曬產品中。其測得的五個樣品質量濃度則為感應耦合電漿質譜儀分析全消化樣品濃度的70-110%。另外,在台灣中部日月潭的一次大型游泳活動(約20,000名參與者)中調查了防曬奈米顆粒的釋放情形,發現在大部分的採樣位置(L1-2,L4-6)含鈦顆粒與總鈦濃度在泳渡期間皆有上升,而在泳渡三天後皆下降,顯示出釋放到湖水中的TiO2顆粒並不會停留很長的時間,其宿命可能為聚集並沉降至湖底。而總鋅濃度也在泳渡當天增加,但是含鋅顆粒卻是在泳渡之後,大部分位置(L1-2, L4-6)出現最高的顆粒濃度,顯示出從防曬劑中釋放的ZnO顆粒經歷了與TiO2截然不同的轉變過程。
Rapid developments in nanotechnology have led to a significant increase in the number of nano-enabled consumer products on the market. For example, TiO2 and ZnO are nanoparticles commonly used in sunscreen and cosmetic products as UV reflective agents. However, many products contain nanomaterials are not clearly labeled and there is an increasing requirement of risk assessment. Additionally, the release of nanoparticles into aqueous environments (e.g., wastewater, rivers, lakes) during product usage and their fate need to be investigated.
The objective in this study is to develop a direct method using spICP-MS to simultaneously quantify the size, elemental composition, and concentrations of nanosized TiO2 and ZnO in selected commercial sunscreen and cosmetic products. Five selected commercial products were classified by hydrophilic/hydrophobic properties and used different Triton X-100 formulations to disperse samples. The size of TiO2 and/or ZnO analyzed by spICP-MS is comparable to that by TEM imaging, which indicate that four of the five selected products studied in detail contain nanosized TiO2 particles, while ZnO particles as aggregation status (> 100 nm) exist in the original products. The mass concentrations of five selected products measured by spICP-MS represent 70-110% of those measured by traditional ICP-MS method with whole sample digestion. In addition, we examined the sunscreen nanoparticles release during a major swimming event (~20,000 participants) at the Sun Moon Lake in central Taiwan. We found that the number concentrations of particulate Ti and the mass concentration of Ti generally increase during the swimming event at most sampling (L1-2, L4-6) locations within the lake and then were reduced 3 days after, indicating that TiO2 nanoparticles do not remain suspended for a long time, and its fate may be aggregation and settling down the sediments. Similarly, Zn mass concentrations also increase during the event, but the Zn particle concentrations vary, showing the highest number concentrations of particulate Zn after the swimming event at most sampling (L1-2, L4-6) locations, which shows that the ZnO nanoparticles are very likely having a different transform process from TiO2 nanoparticles.
(1) Vance, M. E.; Kuiken, T.; Vejerano, E. P.; McGinnis, S. P.; Hochella, M. F.; Rejeski, D.; Hull, M. S. Nanotechnology in the Real World: Redeveloping the Nanomaterial Consumer Products Inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780. https://doi.org/10.3762/bjnano.6.181.
(2) Katz, L. M.; Dewan, K.; Bronaugh, R. L. Nanotechnology in Cosmetics. Food Chem. Toxicol. 2015, 85, 127–137. https://doi.org/10.1016/j.fct.2015.06.020.
(3) Chen, H.; Seiber, J. N.; Hotze, M. ACS Select on Nanotechnology in Food and Agriculture: A Perspective on Implications and Applications. J. Agric. Food Chem. 2014, 62 (6), 1209–1212. https://doi.org/10.1021/jf5002588.
(4) Zhang, L.; Gu, F. X.; Chan, J. M.; Wang, A. Z.; Langer, R. S.; Farokhzad, O. C. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clin. Pharmacol. Ther. 2008, 83 (5), 761–769. https://doi.org/10.1038/sj.clpt.6100400.
(5) Nutrition, C. for F. S. and A. Guidance for Industry: Safety of Nanomaterials in Cosmetic Products /regulatory-information/search-fda-guidance-documents/guidance-industry-safety-nanomaterials-cosmetic-products (accessed May 10, 2019).
(6) Sadrieh, N.; Wokovich, A. M.; Gopee, N. V.; Zheng, J.; Haines, D.; Parmiter, D.; Siitonen, P. H.; Cozart, C. R.; Patri, A. K.; McNeil, S. E.; et al. Lack of Significant Dermal Penetration of Titanium Dioxide from Sunscreen Formulations Containing Nano- and Submicron-Size TiO2 Particles. Toxicol. Sci. 2010, 115 (1), 156–166. https://doi.org/10.1093/toxsci/kfq041.
(7) 衛生福利部食品藥物管理署. 修正化粧品中含Titanium dioxide成分管理規定 https://www.fda.gov.tw/TC/siteListContent.aspx?sid=1894&id=23161 (accessed May 10, 2019).
(8) 行政院衛生署食品藥物管理局. 含藥化粧品基準 https://www.fda.gov.tw/tc/siteListContent.aspx?sid=1152&id=1035 (accessed May 10, 2019).
(9) Zhao, L.; Peralta-Videa, J. R.; Ren, M.; Varela-Ramirez, A.; Li, C.; Hernandez-Viezcas, J. A.; Aguilera, R. J.; Gardea-Torresdey, J. L. Transport of Zn in a Sandy Loam Soil Treated with ZnO NPs and Uptake by Corn Plants: Electron Microprobe and Confocal Microscopy Studies. Chem. Eng. J. 2012, 184, 1–8. https://doi.org/10.1016/j.cej.2012.01.041.
(10) Johnston, H. J.; Hutchison, G. R.; Christensen, F. M.; Peters, S.; Hankin, S.; Stone, V. Identification of the Mechanisms That Drive the Toxicity of TiO2 Particulates: The Contribution of Physicochemical Characteristics. Part. Fibre Toxicol. 2009, 6, 33. https://doi.org/10.1186/1743-8977-6-33.
(11) Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial Text with EEA Relevance; 32011H0696; 2011.
(12) US EPA, O. Nanotechnology White Paper https://www.epa.gov/osa/nanotechnology-white-paper (accessed May 13, 2019).
(13) Johnson, A. C.; Bowes, M. J.; Crossley, A.; Jarvie, H. P.; Jurkschat, K.; Jürgens, M. D.; Lawlor, A. J.; Park, B.; Rowland, P.; Spurgeon, D.; et al. An Assessment of the Fate, Behaviour and Environmental Risk Associated with Sunscreen TiO2 Nanoparticles in UK Field Scenarios. Sci. Total Environ. 2011, 409 (13), 2503–2510. https://doi.org/10.1016/j.scitotenv.2011.03.040.
(14) Choi, S.; Johnston, M.; Wang, G.-S.; Huang, C. P. A Seasonal Observation on the Distribution of Engineered Nanoparticles in Municipal Wastewater Treatment Systems Exemplified by TiO2 and ZnO. Sci. Total Environ. 2018, 625, 1321–1329. https://doi.org/10.1016/j.scitotenv.2017.12.326.
(15) Hassellöv, M.; Readman, J. W.; Ranville, J. F.; Tiede, K. Nanoparticle Analysis and Characterization Methodologies in Environmental Risk Assessment of Engineered Nanoparticles. Ecotoxicol. Lond. Engl. 2008, 17 (5), 344–361. https://doi.org/10.1007/s10646-008-0225-x.
(16) Kammer, F. von der; Ferguson, P. L.; Holden, P. A.; Masion, A.; Rogers, K. R.; Klaine, S. J.; Koelmans, A. A.; Horne, N.; Unrine, J. M. Analysis of Engineered Nanomaterials in Complex Matrices (Environment and Biota): General Considerations and Conceptual Case Studies. Environ. Toxicol. Chem. 2012, 31 (1), 32–49. https://doi.org/10.1002/etc.723.
(17) Tiede, K.; Boxall, A. B. A.; Tear, S. P.; Lewis, J.; David, H.; Hassellöv, M. Detection and Characterization of Engineered Nanoparticles in Food and the Environment. Food Addit. Contam. Part A 2008, 25 (7), 795–821. https://doi.org/10.1080/02652030802007553.
(18) Philippe, A.; Košík, J.; Welle, A.; Guigner, J.-M.; Clemens, O.; Schaumann, G. E. Extraction and Characterization Methods for Titanium Dioxide Nanoparticles from Commercialized Sunscreens. Environ. Sci. Nano 2018, 5 (1), 191–202. https://doi.org/10.1039/C7EN00677B.
(19) Contado, C. Nanomaterials in Consumer Products: A Challenging Analytical Problem. Front. Chem. 2015, 3, 48. https://doi.org/10.3389/fchem.2015.00048.
(20) Markus, A. A.; Parsons, J. R.; Roex, E. W. M.; Kenter, G. C. M.; Laane, R. W. P. M. Predicting the Contribution of Nanoparticles (Zn, Ti, Ag) to the Annual Metal Load in the Dutch Reaches of the Rhine and Meuse. Sci. Total Environ. 2013, 456–457, 154–160. https://doi.org/10.1016/j.scitotenv.2013.03.058.
(21) Kaegi, R.; Ulrich, A.; Sinnet, B.; Vonbank, R.; Wichser, A.; Zuleeg, S.; Simmler, H.; Brunner, S.; Vonmont, H.; Burkhardt, M.; et al. Synthetic TiO2 Nanoparticle Emission from Exterior Facades into the Aquatic Environment. Environ. Pollut. 2008, 156 (2), 233–239. https://doi.org/10.1016/j.envpol.2008.08.004.
(22) Neal, C.; Jarvie, H.; Rowland, P.; Lawler, A.; Sleep, D.; Scholefield, P. Titanium in UK Rural, Agricultural and Urban/Industrial Rivers: Geogenic and Anthropogenic Colloidal/Sub-Colloidal Sources and the Significance of within-River Retention. Sci. Total Environ. 2011, 409 (10), 1843–1853. https://doi.org/10.1016/j.scitotenv.2010.12.021.
(23) Klein, J. J. M. de; Quik, J. T. K.; Bäuerlein, P. S.; Koelmans, A. A. Towards Validation of the NanoDUFLOW Nanoparticle Fate Model for the River Dommel, The Netherlands. Environ. Sci. Nano 2016, 3 (2), 434–441. https://doi.org/10.1039/C5EN00270B.
(24) Luykx, D. M. A. M.; Peters, R. J. B.; van Ruth, S. M.; Bouwmeester, H. A Review of Analytical Methods for the Identification and Characterization of Nano Delivery Systems in Food. J. Agric. Food Chem. 2008, 56 (18), 8231–8247. https://doi.org/10.1021/jf8013926.
(25) Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples - ScienceDirect https://www.sciencedirect.com/science/article/pii/S0003267015013677 (accessed Jun 30, 2019).
(26) Noonan, G. O.; Whelton, A. J.; Carlander, D.; Duncan, T. V. Measurement Methods to Evaluate Engineered Nanomaterial Release from Food Contact Materials. Compr. Rev. Food Sci. Food Saf. 2014, 13 (4), 679–692. https://doi.org/10.1111/1541-4337.12079.
(27) López-Serrano, A.; Olivas, R. M.; Landaluze, J. S.; Cámara, C. Nanoparticles: A Global Vision. Characterization, Separation, and Quantification Methods. Potential Environmental and Health Impact. Anal. Methods 2013, 6 (1), 38–56. https://doi.org/10.1039/C3AY40517F.
(28) Robert Thomas. Practical Guide to ICP-MS: A Tutorial for Beginners, Third Edition https://www.crcpress.com/Practical-Guide-to-ICP-MS-A-Tutorial-for-Beginners-Third-Edition/Thomas/p/book/9781466555433 (accessed Jul 4, 2019).
(29) Laborda, F.; Bolea, E.; Jiménez-Lamana, J. Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. Anal. Chem. 2014, 86 (5), 2270–2278. https://doi.org/10.1021/ac402980q.
(30) Li, L.; Stoiber, M.; Wimmer, A.; Xu, Z.; Lindenblatt, C.; Helmreich, B.; Schuster, M. To What Extent Can Full-Scale Wastewater Treatment Plant Effluent Influence the Occurrence of Silver-Based Nanoparticles in Surface Waters? Environ. Sci. Technol. 2016, 50 (12), 6327–6333. https://doi.org/10.1021/acs.est.6b00694.
(31) Li, L.; Hartmann, G.; Döblinger, M.; Schuster, M. Quantification of Nanoscale Silver Particles Removal and Release from Municipal Wastewater Treatment Plants in Germany. Environ. Sci. Technol. 2013, 47 (13), 7317–7323. https://doi.org/10.1021/es3041658.
(32) Hadioui, M.; Merdzan, V.; Wilkinson, K. J. Detection and Characterization of ZnO Nanoparticles in Surface and Waste Waters Using Single Particle ICPMS. Environ. Sci. Technol. 2015, 49 (10), 6141–6148. https://doi.org/10.1021/acs.est.5b00681.
(33) Reed, R. B.; Faust, J. J.; Yang, Y.; Doudrick, K.; Capco, D. G.; Hristovski, K.; Westerhoff, P. Characterization of Nanomaterials in Metal Colloid-Containing Dietary Supplement Drinks and Assessment of Their Potential Interactions after Ingestion. ACS Sustain. Chem. Eng. 2014, 2 (7), 1616–1624. https://doi.org/10.1021/sc500108m.
(34) Peters, R.; Herrera-Rivera, Z.; Undas, A.; Lee, M. van der; Marvin, H.; Bouwmeester, H.; Weigel, S. Single Particle ICP-MS Combined with a Data Evaluation Tool as a Routine Technique for the Analysis of Nanoparticles in Complex Matrices. J. Anal. At. Spectrom. 2015, 30 (6), 1274–1285. https://doi.org/10.1039/C4JA00357H.
(35) Jenkins, S. V.; Qu, H.; Mudalige, T.; Ingle, T. M.; Wang, R.; Wang, F.; Howard, P. C.; Chen, J.; Zhang, Y. Rapid Determination of Plasmonic Nanoparticle Agglomeration Status in Blood. Biomaterials 2015, 51, 226–237. https://doi.org/10.1016/j.biomaterials.2015.01.072.
(36) Sogne, V.; Meier, F.; Klein, T.; Contado, C. Investigation of Zinc Oxide Particles in Cosmetic Products by Means of Centrifugal and Asymmetrical Flow Field-Flow Fractionation. J. Chromatogr. A 2017, 1515, 196–208. https://doi.org/10.1016/j.chroma.2017.07.098.
(37) Dan, Y.; Shi, H.; Stephan, C.; Liang, X. Rapid Analysis of Titanium Dioxide Nanoparticles in Sunscreens Using Single Particle Inductively Coupled Plasma–Mass Spectrometry. Microchem. J. 2015, 122, 119–126. https://doi.org/10.1016/j.microc.2015.04.018.
(38) Lu, P. J.; Fang, S. W.; Cheng, W. L.; Huang, S. C.; Huang, M. C.; Cheng, H. F. Characterization of Titanium Dioxide and Zinc Oxide Nanoparticles in Sunscreen Powder by Comparing Different Measurement Methods. J. Food Drug Anal. 2018, 26 (3), 1192–1200. https://doi.org/10.1016/j.jfda.2018.01.010.
(39) Lu, P.-J.; Huang, S.-C.; Chen, Y.-P.; Chiueh, L.-C.; Shih, D. Y.-C. Analysis of Titanium Dioxide and Zinc Oxide Nanoparticles in Cosmetics. J. Food Drug Anal. 2015, 23 (3), 587–594. https://doi.org/10.1016/j.jfda.2015.02.009.
(40) Lu, P. J.; Cheng, W. L.; Huang, S. C.; Chen, Y. P.; Chou, H. K.; Cheng, H. F. Characterizing Titanium Dioxide and Zinc Oxide Nanoparticles in Sunscreen Spray. Int. J. Cosmet. Sci. 2015, 37 (6), 620–626. https://doi.org/10.1111/ics.12239.
(41) Bairi, V. G.; Lim, J.-H.; Fong, A.; Linder, S. W. Size Characterization of Metal Oxide Nanoparticles in Commercial Sunscreen Products. J. Nanoparticle Res. 2017, 19 (7), 256. https://doi.org/10.1007/s11051-017-3929-0.
(42) Philippe, A.; Košík, J.; Welle, A.; Guigner, J.-M.; Clemens, O.; Schaumann, G. E. Extraction and Characterization Methods for Titanium Dioxide Nanoparticles from Commercialized Sunscreens. Environ. Sci. Nano 2018, 5 (1), 191–202. https://doi.org/10.1039/C7EN00677B.
(43) Gondikas, A. P.; Kammer, F. von der; Reed, R. B.; Wagner, S.; Ranville, J. F.; Hofmann, T. Release of TiO2 Nanoparticles from Sunscreens into Surface Waters: A One-Year Survey at the Old Danube Recreational Lake. Environ. Sci. Technol. 2014, 48 (10), 5415–5422. https://doi.org/10.1021/es405596y.
(44) Reed, R. B.; Martin, D. P.; Bednar, A. J.; Montaño, M. D.; Westerhoff, P.; Ranville, J. F. Multi-Day Diurnal Measurements of Ti-Containing Nanoparticle and Organic Sunscreen Chemical Release during Recreational Use of a Natural Surface Water. Environ. Sci. Nano 2017, 4 (1), 69–77. https://doi.org/10.1039/C6EN00283H.
(45) Markus, A. A.; Krystek, P.; Tromp, P. C.; Parsons, J. R.; Roex, E. W. M.; Voogt, P. de; Laane, R. W. P. M. Determination of Metal-Based Nanoparticles in the River Dommel in the Netherlands via Ultrafiltration, HR-ICP-MS and SEM. Sci. Total Environ. 2018, 631–632, 485–495. https://doi.org/10.1016/j.scitotenv.2018.03.007.
(46) Venkatesan, A. K.; Reed, R. B.; Lee, S.; Bi, X.; Hanigan, D.; Yang, Y.; Ranville, J. F.; Herckes, P.; Westerhoff, P. Detection and Sizing of Ti-Containing Particles in Recreational Waters Using Single Particle ICP-MS. Bull. Environ. Contam. Toxicol. 2018, 100 (1), 120–126. https://doi.org/10.1007/s00128-017-2216-1.
(47) Peters, R. J. B.; van Bemmel, G.; Milani, N. B. L.; den Hertog, G. C. T.; Undas, A. K.; van der Lee, M.; Bouwmeester, H. Detection of Nanoparticles in Dutch Surface Waters. Sci. Total Environ. 2018, 621, 210–218. https://doi.org/10.1016/j.scitotenv.2017.11.238.
(48) Fréchette-Viens, L.; Hadioui, M.; Wilkinson, K. J. Quantification of ZnO Nanoparticles and Other Zn Containing Colloids in Natural Waters Using a High Sensitivity Single Particle ICP-MS. Talanta 2019, 200, 156–162. https://doi.org/10.1016/j.talanta.2019.03.041.
(49) May, T. W.; Wiedmeyer, R. H. A Table of Polyatomic Interferences in ICP-MS. At. Spectrosc. 1998, 19 (5), 6.
(50) Ramanujam, V. M.; Yokoi, K.; Egger, N. G.; Dayal, H. H.; Alcock, N. W.; Sandstead, H. H. Polyatomics in Zinc Isotope Ratio Analysis of Plasma Samples by Inductively Coupled Plasma-Mass Spectrometry and Applicability of Nonextracted Samples for Zinc Kinetics. Biol. Trace Elem. Res. 1999, 68 (2), 143–158. https://doi.org/10.1007/BF02784403.
(51) Pace, H. E.; Rogers, N. J.; Jarolimek, C.; Coleman, V. A.; Higgins, C. P.; Ranville, J. F. Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83 (24), 9361–9369. https://doi.org/10.1021/ac201952t.
(52) Mitrano, D. M.; Lesher, E. K.; Bednar, A.; Monserud, J.; Higgins, C. P.; Ranville, J. F. Detecting Nanoparticulate Silver Using Single-Particle Inductively Coupled Plasma–Mass Spectrometry. Environ. Toxicol. Chem. 2012, 31 (1), 115–121. https://doi.org/10.1002/etc.719.
(53) Lee, S.; Bi, X.; Reed, R. B.; Ranville, J. F.; Herckes, P.; Westerhoff, P. Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environ. Sci. Technol. 2014, 48 (17), 10291–10300. https://doi.org/10.1021/es502422v.
(54) Gassmann, M.; Grenacher, B.; Rohde, B.; Vogel, J. Quantifying Western Blots: Pitfalls of Densitometry. ELECTROPHORESIS 2009, 30 (11), 1845–1855. https://doi.org/10.1002/elps.200800720.
(55) Lewicka, Z. A.; Benedetto, A. F.; Benoit, D. N.; Yu, W. W.; Fortner, J. D.; Colvin, V. L. The Structure, Composition, and Dimensions of TiO<Subscript>2</Subscript> and ZnO Nanomaterials in Commercial Sunscreens. J. Nanoparticle Res. 2011, 13 (9), 3607. https://doi.org/10.1007/s11051-011-0438-4.
(56) Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products (recast) (Text with EEA relevance) https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02009R1223-20160812&from=EN (accessed Jun 27, 2019).
(57) Report of the Joint Regulator - Industry Ad Hoc Working Group: Currently Available Methods for Characterization of Nanomaterials. - PDF https://docplayer.net/23972686-Report-of-the-joint-regulator-industry-ad-hoc-working-group-currently-available-methods-for-characterization-of-nanomaterials.html (accessed Jun 27, 2019).
(58) Lu, P. J.; Fang, S. W.; Cheng, W. L.; Huang, S. C.; Huang, M. C.; Cheng, H. F. Characterization of Titanium Dioxide and Zinc Oxide Nanoparticles in Sunscreen Powder by Comparing Different Measurement Methods. J. Food Drug Anal. 2018, 26 (3), 1192–1200. https://doi.org/10.1016/j.jfda.2018.01.010.
(59) Lu, P. J.; Cheng, W. L.; Huang, S. C.; Chen, Y. P.; Chou, H. K.; Cheng, H. F. Characterizing titanium dioxide and zinc oxide nanoparticles in sunscreen spray. Int. J. Cosmet. Sci. 2015, 37 (6), 620–626. https://doi.org/10.1111/ics.12239.
(60) Imaging and Characterization of Engineered Nanoparticles in Sunscreens by Electron Microscopy, Under Wet and Dry Conditions: International Journal of Occupational and Environmental Health: Vol 16, No 4 https://www.tandfonline.com/doi/abs/10.1179/107735210799160101 (accessed Jun 27, 2019).
(61) Tai, L.-A.; Kang, Y.-T.; Chen, Y.-C.; Wang, Y.-C.; Wang, Y.-J.; Wu, Y.-T.; Liu, K.-L.; Wang, C.-Y.; Ko, Y.-F.; Chen, C.-Y.; et al. Quantitative Characterization of Nanoparticles in Blood by Transmission Electron Microscopy with a Window-Type Microchip Nanopipet. Anal. Chem. 2012, 84 (15), 6312–6316. https://doi.org/10.1021/ac301523n.
(62) 觀測資料查詢系統 https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp (accessed Aug 21, 2019).
(63) 經濟部水利署. 台灣地區主要水庫蓄水量報告表 https://fhy.wra.gov.tw/ReservoirPage_2011/StorageCapacity.aspx (accessed Jul 5, 2019).
(64) 行政院環保署. 行政院環保署-全國環境水質監測資訊網 https://wq.epa.gov.tw/Code/AdvSearch.aspx?PageID=5&Water=Dam&Area=19&Station= (accessed Jul 5, 2019).
(65) Bian, S.-W.; Mudunkotuwa, I. A.; Rupasinghe, T.; Grassian, V. H. Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid. Langmuir 2011, 27 (10), 6059–6068. https://doi.org/10.1021/la200570n.
(66) Li, M.; Lin, D.; Zhu, L. Effects of Water Chemistry on the Dissolution of ZnO Nanoparticles and Their Toxicity to Escherichia Coli. Environ. Pollut. 2013, 173, 97–102. https://doi.org/10.1016/j.envpol.2012.10.026.
(67) Mohd Omar, F.; Abdul Aziz, H.; Stoll, S. Aggregation and Disaggregation of ZnO Nanoparticles: Influence of pH and Adsorption of Suwannee River Humic Acid. Sci. Total Environ. 2014, 468–469, 195–201. https://doi.org/10.1016/j.scitotenv.2013.08.044.
校內:2024-08-21公開