簡易檢索 / 詳目顯示

研究生: 汪立平
Wang, Li-Ping
論文名稱: 具高熱穩定性可調式NaYMgWO6:Tm3+, Dy3+, Sm3+白色螢光粉之光致發光特性探討
Color-Regulation and Luminescence Properties of NaYMgWO6:Tm3+, Dy3+, Sm3+ Phosphor with High Thermal Stability
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 178
中文關鍵詞: NaYMgWO6WLEDwarm WLEDMaterial Studio熱穩定性佳
外文關鍵詞: WLED, warm WLED, NaYMgWO6, Thermal stability, Material Studio
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用高溫固態反應法製備NaYMgWO6雙鈣鈦礦螢光材料,並選用Tm3+、Dy3+與Sm3+作為活化劑,取代材料中的Y3+以形成發光中心。本研究詳細探討摻雜後NaYMgWO6之晶體結構、光學特性以及活化劑間的能量傳遞現象,並通過改變摻雜活化劑的類型與濃度,成功製備出單相白光螢光粉。
    第一部分先透過第一原理計算NaYMgWO6、NaYMgWO6: 1 mol% Tm3+、NaYMgWO6: 5 mol%Dy3+與NaYMgWO6: 7mol% Sm3+的能隙,觀察材料在少量摻雜後的能隙變化,並利用Tauc plot法,由反射光譜計算出材料的能隙,與模擬數據對照顯示出兩者結果接近,主體材料在摻雜少量活化劑後,能隙皆有微小的下降。
    第二部分研究NaYMgWO6: 1 mol% Tm3+在不同燒結溫度下,其光學特性與晶體結構的變化,將燒結溫度固定在800°C − 1100°C,由XRD分析顯示材料在800°C 與900 °C皆可以完整對應到ICSD標準卡號,但在1000°C以上會有相變化發生,SEM圖像也顯示溫度達到1000 °C以上時,晶粒形狀會發生改變,另外透過PL分析,可以觀察到樣品在900°C時擁有最佳的發光強度,因此選用900°C作為後續實驗的燒結溫度。
    第三部分研究NaYMgWO6分別摻雜Tm3+、Dy3+、Sm3+後,對於晶體結構及光譜特性的影響,利用SEM、XRD與GSAS分析,得出主體材料進行少量摻雜後晶體結構並不會有太大的影響,再透過PL、PLE與CIE分析,測量出Tm3+、Dy3+、Sm3+的最佳摻雜濃度分別為1 mol%、5 mol%和7 mol%,且其CIE座標分別位在藍光、黃光、橘紅光範圍。
    最後是透過共摻雜Tm3+、Dy3+以及Tm3+、Dy3+、Sm3+至主體材料NaYMgWO6中,以製備出單相白光螢光粉。同樣以SEM、XRD與GSAS分析,可見主體材料進行少量摻雜後晶體結構並不會有太大的影響,再透過PL、PLE與CIE分析,觀察出共摻雜Tm3+、Dy3+時,透過改變Dy3+的摻雜濃度,成功製備出可調式的冷白光,其CIE座標可以從(0.235,0.166)調至(0.364,0.357);而在共摻雜Tm3+、Dy3+、Sm3+時,樣品的CIE座標皆落在暖白光範圍,其中摻雜1 mol% Tm3+、1 mol% Dy3+、7 mol% Sm3+的樣品,色溫計算為3099 K,將其進行熱穩定性測量,發現此樣品在LED工作溫度425 K時,發光強度可以維持初始強度的84.7%,代表此樣品具有優異的熱穩定性。

    A series of double perovskite-structured phosphors, NaYMgWO6:Tm3+, Dy3+, Sm3+, were prepared using the high-temperature solid-state reaction method. Material simulations were conducted through Material Studio to predict the material's band gap. Furthermore, the luminescent properties of the materials were analyzed using various techniques including SEM, XRD, PL & PLE spectra, CIE and fluorescence lifetime analysis. By adjusting the doping concentration of Tm3+, Dy3+, and Sm3+ appropriately, each can be assigned to a specific CIE coordinate, enabling the regulation of the phosphors' color temperature. Under 366 nm excitation, the luminescence of NYMWO: Tm3+, Dy3+ phosphors demonstrated a shift in CIE coordinates from (0.235, 0.166), CCT=6949K, to (0.364, 0.357), CCT=4358K, with increasing Dy3+ doping concentration, resulting in adjustable cold white light. Furthermore, co-doping with Sm3+ led to NYMWO: Tm3+, Dy3+, Sm3+ having a color temperature within the warm white range of 3000−4000K. Additionally, the material exhibited excellent thermal stability, retaining 84.7% of its initial PL intensity at 425K.

    中英摘要 I 致謝 XXXII 目錄 XXXIV 表目錄 XXXVIII 圖目錄 XXXIX 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 主體材料介紹 4 第二章 理論與文獻回顧 6 2.1 螢光材料介紹 6 2.2 螢光材料設計 6 2.2.1 主體材料選擇 9 2.2.2 活化劑選擇 10 2.3 螢光材料發光分類 11 2.3.1 激發源之種類 11 2.3.2 螢光材料發光特性分類 13 2.4 螢光材料發光機制 16 2.4.1 發光原理介紹 16 2.4.2 輻射發光 17 2.4.3 組態座標圖 19 2.4.4 史托克位移(Stokes Shift) 21 2.4.5 能量轉移 22 2.5 影響發光特性因素 25 2.5.1 主體共價效應(Covalency Effect) 25 2.5.2 結晶場效應(Crystal field Effect) 25 2.5.3 濃度淬滅效應(Concentration quenching Effect) 26 2.5.4 熱淬滅效應(Thermal quenching Effect) 28 2.5.5 毒劑效應(Poisoning Effect) 29 2.6 螢光材料的製備 30 第三章 實驗步驟與方法 32 3.1 實驗材料 32 3.2 實驗步驟 33 3.3 分析儀器與方法 36 3.3.1 第一原理計算 36 3.3.2 X光繞射分析儀 (X-Ray Diffraction Analysis, XRD) 37 3.3.3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 38 3.3.4 微拉曼及微光激發光譜儀(Micro-Raman&Micro-PL Spectrometer) 39 3.3.5 螢光光譜儀( Fluorescence Spectrophotometer) 40 3.3.6 C.I.E. 色度座標分析 41 3.3.7 紫外光-可見光-近紅外光分光光譜儀(UV/Visible/NIR Spectrophotometer, UV-Vis) 43 3.3.8 量子產率(Quantum Yield)量測 44 3.3.9 生命週期螢光光譜分析 44 第四章 實驗結果與討論 45 4.1 NaYMgWO6第一原理計算 45 4.1.1 能階之計算 45 4.1.2 能態密度圖(Density of state, DOS)之計算 49 4.1.3 UV-visible之能階計算 51 4.2 NaYMgWO6摻雜Tm3+在不同溫度下之特性探討 54 4.2.1 XRD分析 54 4.2.2 SEM分析 55 4.2.3 PL分析 57 4.3 NaYMgWO6摻雜不同濃度Tm3+之特性探討 58 4.3.1 XRD分析 58 4.3.2 SEM分析 61 4.3.3 PLE分析 62 4.3.4 PL分析 63 4.3.5 熱淬滅 (Thermal Quenching)分析 66 4.3.6 量子產率分析 69 4.3.7 螢光衰減分析 70 4.3.8 CIE色度座標分析 71 4.4 NaYMgWO6摻雜不同濃度Dy3+之特性探討 72 4.4.1 XRD分析 72 4.4.2 SEM分析 75 4.4.3 PLE分析 76 4.4.4 PL分析 77 4.4.5 熱淬滅 (Thermal Quenching)分析 79 4.4.6 量子產率分析 82 4.4.7 螢光衰減分析 83 4.4.8 CIE色度座標分析 84 4.5 NaYMgWO6摻雜不同濃度Sm3+之特性探討 85 4.5.1 XRD分析 85 4.5.2 SEM分析 88 4.5.3 PLE分析 89 4.5.4 PL分析 90 4.5.5 熱淬滅 (Thermal Quenching)分析 92 4.5.6 量子產率分析 95 4.5.7 螢光衰減分析 96 4.5.8 CIE色度座標分析 97 4.6 NaYMgWO6共摻雜Tm3+與Dy3+之特性探討 98 4.6.1 XRD分析 98 4.6.2 SEM分析 99 4.6.3 PLE分析 100 4.6.4 PL分析 101 4.6.5 Tm3+與Dy3+離子之能量傳遞 102 4.6.6 熱淬滅 (Thermal Quenching)分析 104 4.6.7 量子產率分析 107 4.6.8 螢光衰減分析 108 4.6.9 CIE色度座標分析 109 4.7 NaYMgWO6三摻雜Tm3+、Dy3+與Sm3+之特性探討 110 4.7.1 XRD分析 110 4.7.2 SEM分析 112 4.7.3 PLE分析 113 4.7.4 PL分析 115 4.7.5 熱淬滅 (Thermal Quenching)分析 116 4.7.6 量子產率分析 119 4.7.7 螢光衰減分析 120 4.7.8 CIE色度座標分析 121 4.8 CIE色度座標圖總比較與色溫探討 122 第五章 結論 126 參考文獻 129

    [1] G. Li, Y. Tian, Y. Zhao, and J. Lin, "Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs," Chemical Society Reviews, vol. 44, no. 23, pp. 8688-8713, 2015.
    [2] N. T. Kalyani and S. Dhoble, "Organic light emitting diodes: Energy saving lighting technology—A review," Renewable and Sustainable Energy Reviews, vol. 16, no. 5, pp. 2696-2723, 2012.
    [3] S. Ye, F. Xiao, Y. Pan, Y. Ma, and Q. Zhang, "Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties," Materials Science and Engineering: R: Reports, vol. 71, no. 1, pp. 1-34, 2010.
    [4] Y. Peng et al., "Flexible fabrication of a patterned red phosphor layer on a YAG: Ce3+ phosphor-in-glass for high-power WLEDs," Optical Materials Express, vol. 8, no. 3, pp. 605-614, 2018.
    [5] X. Jiang, Y. Pan, S. Huang, X. a. Chen, J. Wang, and G. Liu, "Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6: Mn4+ for LED applications," Journal of Materials Chemistry C, vol. 2, no. 13, pp. 2301-2306, 2014.
    [6] H. Xu et al., "Co-precipitation synthesis, luminescent properties and application in warm WLEDs of Na3GaF6: Mn4+ red phosphor," Journal of Luminescence, vol. 219, p. 116960, 2020.
    [7] G. Hu et al., "Luminescence properties and thermal stability of red phosphor Mg2TiO4: Mn4+ additional Zn2+ sensitization for warm W-LEDs," Materials Research Bulletin, vol. 95, pp. 277-284, 2017.
    [8] L. Wang et al., "Photoluminescence properties, crystal structure and electronic structure of a Sr2CaWO6: Sm3+ red phosphor," RSC advances, vol. 5, no. 108, pp. 89290-89298, 2015.
    [9] D. Espinoza et al., "Energy transfer, structural and luminescent properties of the color tunable phosphor Y2WO6: Sm3+," Journal of Alloys and Compounds, vol. 835, p. 155381, 2020.
    [10] Y. Li, J. Jiang, Q. Lv, B. Shao, C. Wang, and G. Zhu, "Structural and spectroscopic features of high color purity red-emitting phosphors Sr19Mg2(PO4)14: Re3+ (Re3+= Eu3+, Sm3+, Pr3+)," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 251, p. 119417, 2021.
    [11] X. Huang and H. Guo, "LiCa3MgV3O12: Sm3+: a new high-efficiency white-emitting phosphor," Ceramics International, vol. 44, no. 9, pp. 10340-10344, 2018.
    [12] J. Liao, B. Qiu, H. Wen, J. Chen, W. You, and L. Liu, "Synthesis process and luminescence properties of Tm3+ in AWO4 (A= Ca, Sr, Ba) blue phosphors," Journal of Alloys and Compounds, vol. 487, no. 1-2, pp. 758-762, 2009.
    [13] Q. Liu, Y. Liu, Z. Yang, Y. Han, X. Li, and G. Fu, "Multiwavelength excited white-emitting phosphor Dy3+-activated Ba3Bi(PO4)3," Journal of alloys and compounds, vol. 515, pp. 16-19, 2012.
    [14] R. Cao et al., "Synthesise, energy transfer and tunable emission properties of Ba2La2ZnW2O12: Sm3+ phosphors," Journal of Luminescence, vol. 235, p. 118054, 2021.
    [15] L. Wu, Y. Wu, Y. Fan, B. Sun, Q. Li, and J. Yu, "Photoluminescence Properties and Energy Transfers in the Novel LiYMgWO6: Dy3+, Tm3+," ECS Advances, vol. 1, no. 2, p. 025001, 2022.
    [16] R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, "A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: synthesis and luminescence properties," Ceramics International, vol. 42, no. 15, pp. 16817-16821, 2016.
    [17] Q. Liu et al., "Fast synthesis of Dy3+ and Tm3+ co-doped double perovskite NaLaMgWO6: a thermally stable single-phase white-emitting phosphor for WLEDs," Journal of Materials Chemistry C, vol. 8, no. 6, pp. 2117-2122, 2020.
    [18] 劉偉仁, 姚中業, 黃健豪, 鍾淑茹, and 金風, LED 螢光粉技術. 台灣五南圖書出版股份有限公司, 2014.
    [19] M. Nazarov, B. Tsukerblat, E.-J. Popovici, and D. Jeon, "Optical lines in europium–terbium double activated calcium tungstate phosphor," Physics letters A, vol. 330, no. 3-4, pp. 291-298, 2004.
    [20] M.-H. Du, "Using DFT methods to study activators in optical materials," ECS Journal of Solid State Science and Technology, vol. 5, no. 1, p. R3007, 2015.
    [21] K. Li, M. Shang, H. Lian, and J. Lin, "Recent development in phosphors with different emitting colors via energy transfer," Journal of Materials Chemistry C, vol. 4, no. 24, pp. 5507-5530, 2016.
    [22] V. Chandra and B. Chandra, "Suitable materials for elastico mechanoluminescence-based stress sensors," Optical Materials, vol. 34, no. 1, pp. 194-200, 2011.
    [23] 劉宇桓, "發光二極體激發之氧氮化合物螢光粉合成與其特性研究," 國立臺灣大學化學系學位論文, vol. 2006, pp. 1-143, 2006.
    [24] J. Selling, G. Corradi, M. Secu, and S. Schweizer, "Comparison of the luminescence properties of the x-ray storage phosphors BaCl2: Ce3+ and BaBr2: Ce3+," Journal of Physics: Condensed Matter, vol. 17, no. 50, p. 8069, 2005.
    [25] K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, "Synthesis, characterization, and luminescent properties of CaS: Eu phosphor," Journal of the American Ceramic Society, vol. 89, no. 11, pp. 3413-3416, 2006.
    [26] V. Kumar, S. S. Pitale, M. Biggs, I. Nagpure, O. Ntwaeaborwa, and H. Swart, "Synthesis of Ce3+ doped SrS nanocrystalline phosphors using a simple aqueous method," Materials Letters, vol. 64, no. 6, pp. 752-754, 2010.
    [27] C. Lin, B.-S. Chiou, C. Chang, and J. Lin, "Preparation and cathodoluminescence of ZnO phosphor," Materials chemistry and physics, vol. 77, no. 3, pp. 647-654, 2003.
    [28] Z. Kang et al., "ZnTe: O phosphor development for x-ray imaging applications," Applied physics letters, vol. 88, no. 11, 2006.
    [29] A. Scacco and P. Jacobs, "Emission spectra of KBr: Sn2+," Journal of Luminescence, vol. 26, no. 4, pp. 393-409, 1982.
    [30] B. Henderson and G. F. Imbusch, Optical spectroscopy of inorganic solids. Oxford University Press, 2006.
    [31] R. B. King, Encyclopedia of inorganic chemistry. Wiley Online Library, 2005.
    [32] G. Blasse, B. Grabmaier, G. Blasse, and B. Grabmaier, A general introduction to luminescent materials. Springer, 1994.
    [33] M. Lax, "The Franck‐Condon principle and its application to crystals," The Journal of chemical physics, vol. 20, no. 11, pp. 1752-1760, 1952.
    [34] F. Yang, M. Wilkinson, E. Austin, and K. O’Donnell, "Origin of the Stokes shift: A geometrical model of exciton spectra in 2D semiconductors," Physical review letters, vol. 70, no. 3, p. 323, 1993.
    [35] R. Yu et al., "Characterizations and optical properties of orange–red emitting Sm3+-doped Y6WO12 phosphors," Journal of luminescence, vol. 155, pp. 317-321, 2014.
    [36] Y. Wang, J. Ding, X. Zhou, and Y. Wang, "Promotion of efficiency and thermal stability by restraining dynamic energy migration based on the highly symmetric rigid structure in the n-UV excitation green emission garnet phosphors," Chemical Engineering Journal, vol. 381, p. 122528, 2020.
    [37] R. Song et al., "Tunable luminescence and improved thermostability via Tm―Dy energy transfer in a tellurooxyphosphate phosphor," Applied Materials Today, vol. 30, p. 101712, 2023.
    [38] Y. Zhou, J. Lin, and S. Wang, "Energy transfer and upconversion luminescence properties of Y2O3:Sm and Gd2O3:Sm phosphors," Journal of Solid State Chemistry, vol. 171, no. 1, pp. 391-395, 2003.
    [39] C. Shang, H. Jiang, X. Shang, M. Li, and L. Zhao, "Investigation on the luminescence improvement of nanosized La2O3/Eu3+ phosphor under charge-transfer excitation," The Journal of Physical Chemistry C, vol. 115, no. 6, pp. 2630-2635, 2011.
    [40] T. L. Brown, H. E. LeMay, B. E. Bursten, and L. S. Brunauer, Chemistry: the central science. Prentice Hall Englewood Cliffs, NJ, 1997.
    [41] A. Alkauskas, Q. Yan, and C. G. Van de Walle, "First-principles theory of nonradiative carrier capture via multiphonon emission," Physical Review B, vol. 90, no. 7, p. 075202, 2014.
    [42] G.-H. Li et al., "The non-concentration-quenching phosphor Ca3Eu2B4O12 for WLED application," Inorganic chemistry, vol. 59, no. 6, pp. 3894-3904, 2020.
    [43] R. H. Bube, S. Larach, and R. E. Shrader, "Mechanism of Impurity Poisoning in the Luminescence of Zinc Sulfide Phosphors with Manganese Activator," Physical Review, vol. 92, no. 5, p. 1135, 1953.
    [44] C. Wei et al., "Synthesis and Photoluminescence Properties of Eu 3+-Activated Double Perovskite Ba2YTaO6 Red Phosphor," Journal of Electronic Materials, vol. 48, pp. 5048-5054, 2019.
    [45] J. Schanda, Colorimetry: understanding the CIE system. John Wiley & Sons, 2007.
    [46] N. B. Hassen, M. Ferhi, K. Horchani-Naifer, and M. Férid, "Synthesis, characterization and optical properties of LiSm (PO3)4 phosphor," Optical Materials, vol. 46, pp. 355-360, 2015.
    [47] J. B. Coulter and D. P. Birnie III, "Assessing Tauc plot slope quantification: ZnO thin films as a model system," physica status solidi (b), vol. 255, no. 3, p. 1700393, 2018.
    [48] N. T. Tran, J. P. You, and F. G. Shi, "Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED," Journal of Lightwave Technology, vol. 27, no. 22, pp. 5145-5150, 2009.
    [49] L. Wu et al., "Luminescence and energy transfer of a color tunable phosphor: Dy3+-,Tm3+-, and Eu3+-coactivated KSr4(BO3)3 for warm white UV LEDs," Journal of Materials Chemistry, vol. 22, no. 13, pp. 6463-6470, 2012.
    [50] Y.-C. Li, Y.-H. Chang, Y.-F. Lin, Y.-J. Lin, and Y.-S. Chang, "High color purity phosphors of LaAlGe2O7 doped with Tm3+ and Er3+," Applied physics letters, vol. 89, no. 8, 2006.
    [51] P. Du and J. S. Yu, "Doping concentration-independent optical thermometric properties in Stark sublevels-based Er3+-activated BaGd2O4 luminescent thermometers," Journal of Luminescence, vol. 203, pp. 172-178, 2018.
    [52] J. Sun, X. Zhang, Z. Xia, and H. Du, "Synthesis and luminescence properties of novel LiSrPO4: Dy3+ phosphor," Materials Research Bulletin, vol. 46, no. 11, pp. 2179-2182, 2011.
    [53] D. L. Dexter and J. H. Schulman, "Theory of concentration quenching in inorganic phosphors," The Journal of Chemical Physics, vol. 22, no. 6, pp. 1063-1070, 1954.
    [54] M. Xin et al., "Single-composition white-emitting NaSrBO3: Ce3+, Sm3+, Tb3+ phosphors for NUV light-emitting diodes," Journal of Materials Chemistry C, vol. 3, no. 28, pp. 7286-7293, 2015.
    [55] S. Zhang, Y. Nakai, T. Tsuboi, Y. Huang, and H. J. Seo, "Luminescence and microstructural features of Eu-activated LiBaPO4 phosphor," Chemistry of Materials, vol. 23, no. 5, pp. 1216-1224, 2011.
    [56] M. Tran et al., "Excellent thermal stability and high quantum efficiency orange-red-emitting AlPO4: Eu3+ phosphors for WLED application," Journal of Alloys and Compounds, vol. 853, p. 156941, 2021.
    [57] Y. Shi, R. Cui, X. Gong, and C. Deng, "A novel red phosphor Ca2YNbO6: Eu3+ for WLEDs," Luminescence, vol. 37, no. 8, pp. 1343-1351, 2022.
    [58] J. Liang et al., "Synthesis and photoluminescence properties of a novel high-efficiency red-emitting Ca2LuSbO6: Eu3+ phosphor for WLEDs," Journal of Luminescence, vol. 214, p. 116605, 2019.
    [59] J. Kuang, Y. Liu, and J. Zhang, "White-light-emitting long-lasting phosphorescence in Dy3+-doped SrSiO3," Journal of Solid State Chemistry, vol. 179, no. 1, pp. 266-269, 2006.
    [60] Y. Liu, Z. Yang, Q. Yu, X. Li, Y. Yang, and P. Li, "Luminescence properties of Ba2LiB5O10: Dy3+ phosphor," Materials letters, vol. 65, no. 12, pp. 1956-1958, 2011.
    [61] G. Ouertani, M. Ferhi, K. Horchani-Naifer, and M. Ferid, "Effect of Sm3+ concentration and excitation wavelength on spectroscopic properties of GdPO4: Sm3+ phosphor," Journal of Alloys and Compounds, vol. 885, p. 161178, 2021.
    [62] M. K. Sahu, M. Jayasimhadri, K. Jha, B. Sivaiah, A. Rao, and D. Haranath, "Synthesis and enhancement of photoluminescent properties in spherical shaped Sm3+/Eu3+ co-doped NaCaPO4 phosphor particles for w-LEDs," Journal of Luminescence, vol. 202, pp. 475-483, 2018.
    [63] L. Mei, H. Liu, L. Liao, Y. Zhang, and R. V. Kumar, "Structure and photoluminescence properties of red-emitting apatite-type phosphor NaY9(SiO4)6O2: Sm3+ with excellent quantum efficiency and thermal stability for solid-state lighting," Scientific Reports, vol. 7, no. 1, p. 15171, 2017.
    [64] D. Xu, W. Zhou, S. Li, and D. Bai, "Ba3LaNa(PO4)3F: Tm3+, Dy3+: a tunable blue-white color emitting phosphor via energy transfer for UV white LEDs," Chinese Chemical Letters, vol. 31, no. 2, pp. 575-578, 2020.
    [65] J. Xiao et al., "Multiple energy transfer in luminescence-tunable single-phased phosphor NaGdTiO4: Tm3+, Dy3+, Sm3+," Nanomaterials, vol. 10, no. 7, p. 1249, 2020.
    [66] J. C. Del Valle and J. Catalán, "Kasha's rule: a reappraisal," Physical chemistry chemical physics, vol. 21, no. 19, pp. 10061-10069, 2019.
    [67] S. Sharma, S. Som, R. Jain, and A. Kunti, "Spectral and CIE parameters of red emitting Gd3Ga5O12: Eu3+ phosphor," Journal of Luminescence, vol. 159, pp. 317-324, 2015.

    無法下載圖示 校內:2029-07-31公開
    校外:2029-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE