簡易檢索 / 詳目顯示

研究生: 陳彥名
Chen, Yen-Ming
論文名稱: 以憶阻器建構之脈衝神經網路硬體的內建自我測試架構
A Built-In Self-Test Scheme for Memristor-Based Spiking Neural Network Hardware
指導教授: 謝明得
Shieh, Ming-Der
共同指導教授: 吳誠文
Wu, Cheng-Wen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 35
中文關鍵詞: 憶阻器超大型積體電路測試機台內建自我測試電路神經網路測試演算法
外文關鍵詞: Memristor, VLSI, ATE, BIST, neural networks, test algorithm
相關次數: 點閱:101下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無論在超大型積體電路或半導體記憶體當中,可測試性設計對於硬體的品質與可靠度提升,一直扮演非常重要的角色。在各種可測試性設計方法當中,內建自我測試電路一直是不可或缺的方法之一。藉由在超大型積體電路及半導體記憶體中內建自我測試電路,我們可以減少晶片的輸入與輸出腳位,亦即能夠降低晶片面積與成本。除此之外,傳統透過測試機台傳送測試向量的方法,會受到測試機台延遲、測試載板延遲、晶片輸入輸出腳位延遲、連接線延遲的影響,使得測試用的時脈週期無法達到晶片實際運作的速度。透過內建自我測試電路,我們可以在晶片內部產生測試向量,並直接傳送到待測電路上進行測試,因此能夠提供實速測試。傳統的內建自我測試電路架構大致上可區分為針對數位邏輯電路架構以及針對半導體記憶體架構兩大類。近年來,新興非揮發性記憶體元件—憶阻器—被認為適合實現脈衝神經網路中的突觸運算。憶阻器除了能儲存神經網路權重,同時可以實現權重的乘加運算。此種以憶阻器建構之脈衝神經網路運算架構被認為能夠大幅提升神經網路運算的能源效率。為了提升其品質與可靠度,相關的硬體錯誤模型(慢積分錯誤與快積分錯誤)與測試演算法(SNN-Test)過去也已被提出。在這篇論文中,我們提出一個針對以憶阻器建構之脈衝神經網路硬體的內建自測試電路。我們的內建自我測試電路支援SNN-Test測試演算法,可針對慢積分與快積分錯誤進行測試。根據我們的實驗結果,此內建自我測試電路可對待測電路進行SNN-Test實速測試,且僅增加晶片面積0.8%。

    Design for testability (DFT) has always played a very important role in improving the quality and reliability of very large-scale integrated-circuit (VLSI) and semiconductor memories. Among the various DFT methods, the built-in self-test (BIST) is effective and essential for embedded memories. The traditional testing method relies on automatic test equipment (ATE) for transmitting the test vectors and monitoring the test responses. However, transmitting test vectors to, and receiving responses from the embedded memories on the die under test (DUT) will need to consider the extra signal delay of the ATE, the load board, the package pins, the input and output (IO) pads, and the interconnections between the IO pads and the memory cores. Therefore, the clock frequency for testing cannot reach the speed of the actual operation of the memories, and there may be extra IO pads and routing area to support ATE testing of on-chip memories. The on-chip BIST circuit can directly generate and send test vectors to, and receive response vectors from the memory under test, i.e., the at-speed test can be done. In recent years, memristors have been considered suitable for implementing the synapses in spiking neural networks (SNNs). In addition to storing the synaptic weights, memristors can also implement the multiplication and addition computation of weights. The memristor-based SNN architectures potentially can improve the energy efficiency of the SNN computation. In previous work from our lab, the functional fault modules for SNNs have been proposed, i.e., the slow integration fault (SIF) and fast integration fault (FIF) models [3]. A test algorithm for memristor-based SNN has also been proposed, which is called the SNN-Test. In this work, we develop a BIST scheme that implements the SNN-Test. Experimental results show that our BIST scheme can perform at-speed testing of the SNN, and covers all the SIFs and FIFs, with only about 0.8% of silicon area overhead.

    摘要i Abstract ii Contents v List of Figures vii List of Tables ix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Proposed BIST Scheme for Memristor-Based SNN 3 1.3 Thesis Organization 3 Chapter 2 Background 5 2.1 Resistive Switching Mechanism of Memristor 5 2.1.1 Memristor Resistance States 6 2.1.2 1T1R Cell Array 7 2.2 Introduction to Memristor-Based Spiking Neural Network 9 2.3 Memristor-Based Spiking Neural Network 10 2.4 Functional Fault Models 14 2.5 SNN-Test Algorithm 14 2.6 Introduction to Memory Built-in Self-Test (BIST) 15 Chapter 3 Proposed SNN-BIST 17 3.1 The SNN Module 17 3.2 SIF and FIF Simulation in SNN Module 19 3.3 Proposed SNN-BIST 22 3.3.1 SNN BIST Architecture 22 3.3.2 Controller 23 3.3.3 Sequencer 25 3.3.4 Test Pattern Generator (TPG) 26 Chapter 4 Experimental Results 29 4.1 Experimental Settings 29 4.2 Experimental Result 29 Chapter 5 Conclusions and Future Work 33 Bibliography 34

    [1] J. J. LeBlanc, "LOCST: A Built-In Self-Test Technique", IEEE Design & Test of Computers, vol. 1, no. 4, pp. 45-52, Nov. 1984.
    [2] C. Cheng, C.-T. Huang, J.-R. Huang, C.-W. Wu, C.-J. Wey, M. -C. Tsai, "BRAINS: A BIST Compiler for Embedded Memories", in Proc. IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems, pp. 299-307, Oct. 2000.
    [3] L.-T. Wang, C.-W. Wu, and X. Wen, "VLSI Test Principles and Architectures: Design for Testability", Elsevier, 2006.
    [4] H.-H. Cheng, "Fault Models and Test Algorithms for Memristor-Based Spiking Neural Network", M. S. Thesis, 2021.
    [5] C.-X. Xue, W.-H. Chen, J.-S. Liu, J.-F. Li, W.-Y. Lin, W.-E. Lin, J.H. Wang, W.-C. Wei, T.-Y. Huang, T.-W. Chang, T.-C. Chang, H.Y. Kao, Y.-C. Chiu, C.-Y. Lee, Y.-C. King, C.-J. Lin, R.-S. Liu, C.C. Hsieh, K.-T. Tang, and M.-F. Chang, "Embedded 1-Mb ReRAM-Based Computing-in-Memory Macro with Multibit Input and Weight for CNN-based AI Edge Processors," IEEE Jour. Solid-State Circuits, vol. 55, no. 1, pp. 203-215, Jan. 2020.
    [6] B. Yan, Q. Yang, W.-H. Chen, K.-T. Chang, J.-W. Su, C.-H. Hsu, S.H. Li, H.-Y. Lee, S.-S. Sheu, M.-S. Ho, Q. Wu, M.-F. Chang, Y. Chen, and H. Li, "RRAM-Based Spiking Nonvolatile Computing-in-Memory Processing Engine with Precision-Configurable in situ Nonlinear Activation," in Proc. 2019 Symp. VLSI Technology, pp. T86-T87, June 2019.
    [7] C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Dávila, C. E. Graves, Z. Li, J. P. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R. S. Williams, J. J. Yang, and Q. Xia, "Analogue Signal and Image Processing with Large Memristor Crossbars," Nature Electronics, vol. 1, no. 1, pp. 52-59, Dec. 2018.
    [8] C.-Y. Chen, H.-C. Shih, C.-W. Wu, C.-H. Lin, P.-F. Chiu, S.-S. Sheu, and F. T. Chen, "RRAM Defect Modeling and Failure Analysis Based on March Test and a Novel Squeeze-Search Scheme," IEEE Trans. On Computers, vol. 64, no. 1, pp. 180-190, Jan. 2014.
    [9] M. Fieback, M. Taouil, and S. Hamdioui, "Testing Resistive Memories: Where are We and What is Missing", in Proc. IEEE Int. Test Conf. (ITC), pp. 1-9, Nov. 2018.
    [10] S. Kannan, J. Rajendran Karri, R., and O. Sinanoglu, "Sneak-Path Testing of Memristor-Based Memories", in Proc. 26th Int. Conf. on VLSI Design and 12th Int. Conf. on Embedded Systems, pp. 386-391, Jan. 2013.
    [11] S. Kannan, J. Rajendran, R. Karri and O. Sinanoglu, "Sneak-Path Testing of Crossbar-Based Nonvolatile Random Access Memories", IEEE Trans. on Nanotechnology, vol. 12, no. 3, pp. 413-426, Mar. 2013.
    [12] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, "Metal–Oxide RRAM", Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, May. 2012.
    [13] S. Ghosh-Dastidar, & H. Adeli, "Spiking Neural Networks", Int. Journal of Neural Systems, vol. 19, no. 4, pp. 295-308, Aug. 2009.
    [14] E. J. McCluskey, "Built-in Self-Test Structures", IEEE Design & Test of Computers, vol. 2, no.2, pp. 29-36, April. 1985.
    [15] K.-W. Hou, H.-H. Cheng, C. Tung, C.-W. Wu, and J.-M. Lu, "Fault Modeling and Testing of Memristor-Based Spiking Neural Networks", in Proc. IEEE Int. Test Conf. (ITC), Anaheim, CA, Sept. 2022 (to appear).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE