| 研究生: |
李阡筠 Lee, Chien-Yun |
|---|---|
| 論文名稱: |
應用三維電阻抗影像量化分析肺部氣體分佈 The Application of 3D Electrical Impedance Image to Quantitatively Analyze the Lung Air Distribution |
| 指導教授: |
鄭國順
Cheng, Kuo-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 電阻抗影像 、三維影像重建 、曲面重建 、量化 |
| 外文關鍵詞: | Electrical Impedance Image, 3D image reconstruction, Surface reconstruction, Quantify |
| 相關次數: | 點閱:178 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電阻抗斷層影像技術在肺部的即時或長時連續監測深具潛力,本研究應用電阻抗斷層影像來量化及分析肺部氣體的通氣分佈狀態。本研究探討三個部分:1、實驗設計,2、測量校正,和3、視覺化呈現。本研究在IRB同意與書面受試者同意書下收受三位正常人,實驗設計中擷取每位受試者在自主呼吸狀態下,五層胸廓截面之二維電阻抗斷層影像並同步使用肺量計取得口腔通氣量,其次將電阻抗影像內插影像,用以重建三維肺部立體模型。此外同步量測的肺流量訊號以內插方法將不同時間量測的電阻抗影像同步,作為影像時間對位參考指標。在測量校正部份則應用肺量計體積變化為量化標準,針對電阻抗影像與肺量計訊號進行回歸分析求得校正因子,再利用校正因子回推三維影像中體積變化並與肺量計測得的體積比較;從實驗結果得知,三維電阻抗影像誤差 小於10 %,反之二維電阻抗影像的誤差最大超過 100 %,且會因為肺區通氣程度而影響量化之線性程度。因此目前臨床應用的二維電阻抗影像較不易獲得肺部氣流在空間中的分佈資訊。三維電阻抗影像可提供更具臨床參考價值的肺部氣體分佈。
Electrical Impedance Tomography (EIT) is a potential technology for real-time or long-term use in continuous monitoring of the lungs. This study applies electrical impedance images to quantify and analyze the distribution of air in the lungs. There are three parts in this study: (1) Experimental design, (2) Measurement calibration, and (3) 3D visualization. In this study, three healthy subjects are recruited with IRB approval and informed consent. In the first part, five layers of thoracic sections are measured under spontaneous breathing for each subject. The impedance images and flows via mouth are both synchronously acquired. Then, the images are interpolated for three dimension reconstruction and the flow signals are also interpolated for registering to the images. In the measurement calibration, the flow measurement obtained from spirometer is used as gold standard for calibration using regression method. With the correction factors, the volume in impedance image may be quantified and compared. From the experimental results, the error may be smaller than 10 % in 3D measurement, and on the contrary greater than 100% in 2D measurement. Therefore, 2D EIT is not easy to quantify the air distribution of the lung perfusion in the current clinical application. 3D EIT has great potential to provide the lung air distribution.
[1] E. N. Marieb, P. B. Wilhelm, and J. B. Mallatt, Human Anatomy: Pearson New International Edition. Pearson Higher Ed, 2013.
[2] L. Gattinoni, E. Carlesso, L. Brazzi, and P. Caironi, “Positive end-expiratory pressure:,” Curr. Opin. Crit. Care, vol. 16, no. 1, pp. 39–44, Feb. 2010.
[3] A. Hovnanian, E. Menezes, S. Hoette, C. Jardim, D. Jasinowodolinski, and R. Souza, “The role of imaging techniques in the assessment of pulmonary circulation,” J. Bras. Pneumol., vol. 37, no. 3, pp. 389–403, Jun. 2011.
[4] R. Bayford and A. Tizzard, “Bioimpedance imaging: an overview of potential clinical applications,” The Analyst, vol. 137, no. 20, p. 4635, 2012.
[5] M. R. Miller, J. Hankinson, V. Brusasco, F. Burgos, R. Casaburi, A. Coates, R. Crapo, P. Enright, C. P. M. Van Der Grinten, and P. Gustafsson, “Standardisation of spirometry,” Eur. Respir. J., vol. 26, no. 2, pp. 319–338, 2005.
[6] B. Vogt, C. Falkenberg, N. Weiler, and I. Frerichs, “Pulmonary function testing in children and infants,” Physiol. Meas., vol. 35, no. 3, p. R59, 2014.
[7] “Chest Imaging,” Available: http://www.merckmanuals.com
[8] C. C. W. Hsia, D. M. Hyde, M. Ochs, and E. R. Weibel, “An Official Research Policy Statement of the American Thoracic Society/European Respiratory Society: Standards for Quantitative Assessment of Lung Structure,” Am. J. Respir. Crit. Care Med., vol. 181, no. 4, pp. 394–418, Feb. 2010.
[9] S. Ley, K.-F. Kreitner, C. Fink, C. P. Heussel, M. M. Borst, and H.-U. Kauczor, “Assessment of pulmonary hypertension by CT and MR imaging,” Eur. Radiol., vol. 14, no. 3, pp. 359–368, Jan. 2004.
[10] Y. Ohno, M. Nishio, H. Koyama, S. Miura, T. Yoshikawa, S. Matsumoto, and K. Sugimura, “Dynamic Contrast-Enhanced CT and MRI for Pulmonary Nodule Assessment,” Am. J. Roentgenol., vol. 202, no. 3, pp. 515–529, Feb. 2014.
[11] M. Wielpütz and H.-U. Kauczor, “MRI of the lung: state of the art,” Diagn. Interv. Radiol., vol. 18, no. 4, p. 344, 2012.
[12] W. R. Fan and H. X. Wang, “3D modelling of the human thorax for ventilation distribution measured through electrical impedance tomography,” Meas. Sci. Technol., vol. 21, no. 11, p. 115801, 2010.
[13] C. Guerin and I. Frerichs, “Getting a Better Picture of the Correlation between Lung Function and Structure Using Electrical Impedance Tomography,” Am. J. Respir. Crit. Care Med., vol. 190, no. 10, pp. 1186–1187, Nov. 2014.
[14] A. Adler, M. B. Amato, J. H. Arnold, R. Bayford, M. Bodenstein, S. H. Böhm, B. H. Brown, I. Frerichs, O. Stenqvist, N. Weiler, and G. K. Wolf, “Whither lung EIT: Where are we, where do we want to go and what do we need to get there?,” Physiol. Meas., vol. 33, no. 5, p. 679, 2012.
[15] I. Frerichs, T. Becher, and N. Weiler, “Electrical impedance tomography imaging of the cardiopulmonary system:,” Curr. Opin. Crit. Care, vol. 20, no. 3, pp. 323–332, Jun. 2014.
[16] I. Frerichs, J. Hinz, P. Herrmann, G. Weisser, G. Hahn, T. Dudykevych, M. Quintel, and G. Hellige, “Detection of local lung air content by electrical impedance tomography compared with electron beam CT,” J. Appl. Physiol., vol. 93, no. 2, pp. 660–666, Aug. 2002.
[17] J. C. Richard, C. Pouzot, A. Gros, C. Tourevieille, D. Lebars, F. Lavenne, I. Frerichs, and C. Guérin, “Electrical impedance tomography compared to positron emission tomography for the measurement of regional lung ventilation: an experimental study,” Crit. Care, vol. 13, no. 3, pp. 1–9, May 2009.
[18] J. K. Seo and E. J. Woo, “Electrical impedance tomography,” Nonlinear Inverse Probl. Imaging, pp. 195–249, 2013.
[19] R. Bayford, P. Kantartzis, A. Tizzard, R. Yerworth, P. Liatsis, and A. Demosthenous, “Development of a neonate lung reconstruction algorithm using a wavelet AMG and estimated boundary form,” Physiol. Meas., vol. 29, no. 6, p. S125, 2008.
[20] C. T. Soulsby, M. Khela, E. Yazaki, D. F. Evans, E. Hennessy, and J. Powell-Tuck, “Measurements of gastric emptying during continuous nasogastric infusion of liquid feed: Electric impedance tomography versus gamma scintigraphy,” Clin. Nutr., vol. 25, no. 4, pp. 671–680, Aug. 2006.
[21] B. H. Brown, “Electrical impedance tomography (EIT): a review,” J. Med. Eng. Technol., vol. 27, no. 3, pp. 97–108, Jan. 2003.
[22] J.-F. P. J. Abascal, S. R. Arridge, D. Atkinson, R. Horesh, L. Fabrizi, M. De Lucia, L. Horesh, R. H. Bayford, and D. S. Holder, “Use of anisotropic modelling in electrical impedance tomography; Description of method and preliminary assessment of utility in imaging brain function in the adult human head,” NeuroImage, vol. 43, no. 2, pp. 258–268, Nov. 2008.
[23] I. Frerichs, “Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities,” Physiol. Meas., vol. 21, no. 2, p. R1, 2000.
[24] T. K. Bera, “Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review,” J. Med. Eng., vol. 2014, p. e381251, Jun. 2014.
[25] D. C. Barber and B. H. Brown, “Applied potential tomography,” J. Phys. [E], vol. 17, no. 9, p. 723, 1984.
[26] M. G. Crabb, J. L. Davidson, R. Little, P. Wright, A. R. Morgan, C. A. Miller, J. H. Naish, G. J. M. Parker, R. Kikinis, H McCann, and W. R. B. Lionheart, “Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT,” Physiol. Meas., vol. 35, no. 5, p. 863, 2014.
[27] D. T. Nguyen, C. Jin, A. Thiagalingam, and A. L. McEwan, “A review on electrical impedance tomography for pulmonary perfusion imaging,” Physiol. Meas., vol. 33, no. 5, p. 695, 2012.
[28] G. Parrinello, S. Paterna, P. Di Pasquale, D. Torres, A. Fatta, M. Mezzero, R. Scaglione, and G. Licata, “The Usefulness of Bioelectrical Impedance Analysis in Differentiating Dyspnea Due to Decompensated Heart Failure,” J. Card. Fail., vol. 14, no. 8, pp. 676–686, Oct. 2008.
[29] B. Grychtol and A. Adler, “Choice of reconstructed tissue properties affects interpretation of lung EIT images,” Physiol. Meas., vol. 35, no. 6, p. 1035, 2014.
[30] B. H. Brown and A. D. Seagar, “The Sheffield data collection system,” Clin. Phys. Physiol. Meas., vol. 8, no. 4A, p. 91, 1987.
[31] J. Malmivuo and R. Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, 1995.
[32] P. HUA, “Effect of the measurement method on noise handling and image quality of EIT imaging,” Proc Annu Int Conf Engng Med Biol Soc, vol. 9, pp. 1429–1430, 1987.
[33] R. D. Cook, G. J. Saulnier, D. G. Gisser, J. C. Goble, J. C. Newell, and D. Isaacson, “ACT3: a high-speed, high-precision electrical impedance tomograph,” IEEE Trans. Biomed. Eng., vol. 41, no. 8, pp. 713–722, Aug. 1994.
[34] G. J. Saulnier, N. Liu, C. Tamma, H. Xia, T. J. Kao, J. C. Newell, and D. Isaacson, “An Electrical Impedance Spectroscopy System for Breast Cancer Detection,” in 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007. EMBS 2007, 2007, pp. 4154–4157.
[35] C. P. Criée, S. Sorichter, H. J. Smith, P. Kardos, R. Merget, D. Heise, D. Berdel, D. Köhler, H. Magnussen, W. Marek, H. Mitfessel, K. Rasche, M. Rolke, H. Worth, and R. A. Jörres, “Body plethysmography – Its principles and clinical use,” Respir. Med., vol. 105, no. 7, pp. 959–971, Jul. 2011.
[36] “Instructions for Use Infinity® V500 Ventilator,” Dräger Medical GmbH changes to Drägerwerk AG & Co. KGaA, Aug. 2015.
[37] Eckhard Teschner and Michael Imhoff “Electrical Impedance Tomography: The realization of regional ventilation monitoring,” Dräger, 2010.
[38] “Instructions for Use PulmoVista 500,” Dräger. Technology for Life, 2011.
[39] W. Q. Lindh, M. Pooler, C. D. Tamparo, and B. M. Dahl, Delmar’s Comprehensive Medical Assisting: Administrative and Clinical Competencies. Cengage Learning, 2009.
[40] Y. Long, D.-W. Liu, H.-W. He, and Z.-Q. Zhao, “Positive End-expiratory Pressure Titration after Alveolar Recruitment Directed by Electrical Impedance Tomography,” Chin. Med. J. (Engl.), vol. 128, no. 11, pp. 1421–1427, Jun. 2015.
[41] Z. Zhao, K. Moller, D. Steinmann, and J. Guttmann, “Determination of Lung Area in EIT Images,” in 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, 2009, pp. 1–4.
[42] Rajamani, V., P. Babu, and S. Jaiganesh. “A Review of various global contrast enhancement techniques for still images using histogram Modification Framework,” International Journal of Engineering Trends and Technology, pp. 1045-1048, 2013.
[43] M. Ali, C. W. Ahn, and M. Pant, “Multi-level image thresholding by synergetic differential evolution,” Appl. Soft Comput., vol. 17, pp. 1–11, Apr. 2014.
[44] Gonzale, R. C. and R.E. Woods, Digital Image Processing. 3rd Ed., Prentice Hall, Inc. Upper Saddle River, New Jersey, 2008.
校內:立即公開