| 研究生: |
林文欽 Lin, Wen-Chin |
|---|---|
| 論文名稱: |
WAVEWATCH III海洋波浪模式之參數敏感度分析 The Sensitivity Analysis of Parameters of WAVEWATCH III Ocean Wave Model |
| 指導教授: |
高家俊
Kao, Chia-Chuen 李汴軍 Lee, Ben-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 敏感度分析 、波浪模式 |
| 外文關鍵詞: | WAVEWATCH III |
| 相關次數: | 點閱:59 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
WAVEWATCH III 數值波浪模式已被廣泛應用於作業化的波浪預報,然而模式的控制方程式中有許多前人利用現場觀測資料或水工模型實驗迴歸得到的經驗公式,式中的參數值不間斷地有學者專家從事相關研究,期望獲得最佳參數值。本文歸納前人研究,整理得到WAVEWATCH III 數值波浪模式中可修正的參數,利用統計學的敏感度分析得到各參數的排序為:風速轉換常數(co)、計算PM波譜形的係數(Xp)、能量的分配常數(C)、受風域外成長能量的率除係數(Xs)、底床摩擦係數(Γ )、平均相對水深(kd )、計算成熟波譜形的係數(Xr、Xf),此排列順序顯示各參數在數值波浪模式中的影響程度。另外,為了瞭解上述八個參數中,是否每個參數均對模式計算結果具有明顯的反應,本文逐一以累加方式選取參數個數進行計算,結果顯示以co、Xp、C、Xs 對模式計算結果具有較明顯之反應。利用上述對參數分析的結果,在季風和颱風天氣條件下以ARS法尋求WAVEWATCH III 數值波浪模式應用於台灣海域時之最佳參數,由結果顯示不同天氣型態會影響參數值的設定,並進一步利用台灣海域之現場觀測資料驗證參數之適用性,由結果顯示利用調整後的參數計算得到的波浪較接近實測值,證明本文以敏感度分析先對參數進行分析,再利用ARS法尋求最佳參數的研究過程,可使模式計算出合理的結果。
WAVEWATCH III wave model has already widely used in the wave prediction, but there are lots of forefathers take advantage of the observation or the water conservancy project model experiment to receive the experience formula. the parameter value in the type is having scholar experts to engaged in relevant research constantly, expect to obtain the best parameter value. This paper generalized the parameters of WAVEWATCH III wave model which revised from many forefathers. Using the sensitivity analysis of statistics, then we get the sort of these parameters, each of them are: the effective wind factor (co), coefficient of calculating the shape of PM spectrum (Xp), the proportion constant of wave energy (C), the swell attenuation filter factor by wind (Xs), the bottom friction coefficient (Γ ), the mean relative depth (kd ), coefficient of calculating the shape of ripe spectrum (Xr, Xf) in turn. The permutation of these parameters showed the level of influence of WAVEWATCH III wave model. In addition, in order to understand in above-mentioned eight parameters, whether each parameter has obvious response to the result of calculation of the way , this text chooses the number of parameter to calculate by way of accumulating one by one, the result show that has more obvious response to the result of calculation of the way with co, Xp, C, Xs. Making use of this result of the susceptibility analysis, the best parameter when by seeking the way to apply to the sea area of Taiwan in ARS (Adaptive Random Search) approach under monsoon and typhoon weather condition. It was shown that different weather condition will influence the settlement of parameter value by the result. Furthermore, use the observation around Taiwan water to verify the suitability of these parameters. It was shown that using the parameters after adjusting to calculate the wave and relatively close to the surveying value by the result, it is proved that this paper analyses with the susceptibility that analyses about the parameter first, then use ARS approach to seek the research course of the best parameter can make the way calculate out the rational result.
1.Bathurst, J. C., “Sensitivity Analysis of the System Hydrologique Europeen for An Upland Catchment,” Journal of Hydrology, Vol. 87, pp. 103-123 (1986).
2.Brazil, L. E. and W. F. Krajewski, “Optimization of Complex Hydrologic Models Using Random Search Method,” Engineering Hydrology Conference, Hydraul. Div. ASCE, Williamsburg , 1987.
3.Chalikov, D. V. and M. Y. Belevich, “One-dimensional theory of the wave boundary layer,” Bound. Layer Meteor., Vol. 63, pp. 65-96 (1993).
4.Chalikov, D. V., “The Parameterization of the Wave Boundary Layer,” Journal of Physical Oceanography, Vol. 25, pp. 1333-1349 (1995).
5.Charnock, H., “Wind Stress on a Water Surface,” Quart. J. Roy. Meteor. Soc., Vol. 81, pp. 639-640 (1955).
6.Hashimoto, N. and Nagai, T., “Extension of the Maximum Entropy Principle Method for Directional Wave Spectrum Estimation,” Proc. 25th Int. Conf. on Coastal Eng., ASCE, pp. 232-246 (1994).
7.Hasselmann, K., “On the Nonlinear Energy Transfer in a Gravity-wave Spectrum. Part 1: General Theory,” Journal of Fluid Mechancis, Vol. 12, pp. 481-500 (1962).
8.Hasselmann, K., “On the Nonlinear Energy Transfer in a Gravity-wave Spectrum. Part 2: Conservation Theorems, Wave-particle Correspondence, Irreversibility,” Journal of Fluid Mechancis, Vol. 15, pp. 273-281 (1963a).
9.Hasselmann, K., “On the Nonlinear Energy Transfer in a Gravity-wave Spectrum. Part 3: Computation of the Energy Flux and Swell-Sea Interaction for a Neumann Spectrum,” Journal of Fluid Mechancis, Vol. 15, pp. 385-398 (1963b).
10.Hasselmann, S. and K. Hasselmann, J. H. Allender and T. P. Barnett, “Computations and Parameterizations of the Linear Energy Transfer in a Gravity Wave Spectrum. Part II: Parameterizations of the Nonlinear Transfer for Application in the Wave Models,” Journal of Physical Oceanography, Vol. 15, No. 11, pp. 1378-1391 (1985).
11.Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerburg, P. Muller, D. J. Olbers, K. Richter, W. Sell and H. Walden, “Measurements of Wind-wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP),” Dtsch. Hydrogr. Z. Suppl., 12, A8 (1973).
12.Hasselmann, K., “On the Spectral Dissipation of Ocean Waves due to Whitecapping,” Bound.-layer Meeteor., Vol. 6, No. 1-2, pp.107-127 (1974).
13.Janssen, P. A. E. M., “Wind-induced Stress and the Drag of Air-flow over sea waves,” Journal of Physical Oceanography, Vol. 19, pp. 745-754 (1989).
14.Janssen, P. A. E. M., “Quasi-linear Theory of Wind-wave Generation Application to Wave Forecasting,” Journal of Physical Oceanography, Vol. 21, pp. 1631-1642 (1991).
15.Komen, G. J., S. Hasselmann and K. Hasselmann, “On the Existence of Fully Developed Wind-sea Spectrum,”Journal of Physical Oceanography, Vol. 14, pp. 1271-1285 (1984).
16.Miles, J. W. “On the Generatoin of Surface Waves by Shear Flows,” Journal of Fluid Mechancis, Vol. 3, pp. 185-204 (1957).
17.Miles, J. W. “On the Generatoin of Surface Waves by Turbulent Shear Flow,”Journal of Fluid Mechancis, Vol. 7, pp. 469-478 (1960).
18.Phillips, O. M., “On the Generation of Waves by Turbulent Wind,” Journal of Fluid Mechancis, Vol. 2, pp. 417-445 (1957).
19.Snyder, R. L. and C. S. Cox, “A Field Study of the Wind Generation of Ocean Waves,”Journal of Fluid Mechancis, Vol. 24, pp. 141-178 (1966).
20.Snyder, R. L., F. W. Dobson, J. A. Elliot and R. B. Long, “Array Measurements of Atmospheric Pressure Fluctuations above Surface Gravity Waves,” Journal of Fluid Mechancis, Vol. 102, pp. 1-59 (1981).
21.Tolman, H. L. and D. Chalikov, “Source Terms in a Third-Generation Wind Wave Model,” Journal of Physical Oceanography, Vol. 26, pp. 2497-2518 (1996).
22.Tolman, H. L., “Testing of WAVEWATCH III version 2.22 in NCEP’s NWW3 ocean wave model suite,” Technology Note 214, NOAA/NWS/NCEP/OMB, 99pp. (2002d).
23.Tolman, H. L., “Validation of WAVEWATCH III version 1.15 for a Global Domain,” Technology Note 213, NOAA/NWS/NCEP/OMB, 33pp. (2002f).
24.Tolman, H. L., “User Manual and System Documentation of WAVEWATCH III version 2.22,” Technology Note 214, NOAA/NWS/NCEP/OMB,133pp. (2002g).
25.Tolman, H. L., “A Third-Generation Model for Wind Waves on Slowly Varying, Unsteady and Inhomogeneous depths and Currents,” Journal of Physical Oceanography, Vol. 21, pp. 782-797 (1991).
26.Tolman, H. L., “Effects of Numerics on the Physics in a Third-Generation Wind-wave Model,” Journal of Physical Oceanography, Vol. 22, pp. 1095-1111 (1992).
27.Torn, A. and A. Zilinskas, Global Optimization, Spring-Verlag, New York, 1989.
28.WAMDI Group, “The WAM Model – A Third Generation Ocean Wave Prediction Model,” Journal of Physical Oceanography, Vol. 18, pp. 1775-1810 (1988).
29.Wingeart, K. M., W. C. O’Reilly, T. H. C. Herbers, P.A. Wittmann, R. E. Janssen and H. L. Tolman, “Validation of Operational Global Wave Prediction Models with Spectral Buoy Data in B. L. Edge and J. M. Hemsley, editor,” Ocean Wave Measurement and Analysis, pp. 590-599, ASCE (2001).
30.Wu, J., “Wind-stress Coefficients over Sea Surface from Breeze to Hurricane,” Journal of Geophysical Research, Vol. 87, No. C12, pp. 9704-9706 (1982).
31.鄭玉荻,「格網式分佈型降雨-逕流模式之研究」,國立成功大學水利及海洋工程研究所碩士論文(1995)。
32.錢樺,「最大熵法應用於推估方向波譜之研究」,國立成功大學水利及海洋工程研究所碩士論文(1996)。
33.陳信彰,「分佈型降雨-逕流模式之不確定性與敏感度分析」,國立成功大學水利及海洋工程研究所碩士論文(1997)。
34.方介群,「應用SWAN風浪模式推算台灣附近海域之颱風波浪」,國立成功大學水利及海洋工程研究所碩士論文(2000)。
35.廖建明,「近岸風浪推算之研究」,國立成功大學水利及海洋工程研究所博士論文(2001)。