研究生: |
蔡萬霖 Tsai, Wan-Lin |
---|---|
論文名稱: |
摻雜碘化鉀對有機鈣鈦礦電阻式記憶體特性影響之研究 Effect of incorporating potassium iodide on CH3NH3PbI3 resistive random access memory properties |
指導教授: |
施權峰
Shih, Chuan-Feng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 鈣鈦礦 、雙功能元件 、發光二極體 、電阻式記憶體 、摻雜碘化鉀 |
外文關鍵詞: | CH3NH3PbI3, dual function device, LED, RRAM, incorporating KI |
相關次數: | 點閱:89 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機鈣鈦礦因為優越的光電及記憶特性,被運用在不同功能的方面,例:發光二極體、太陽能電池、光感測器、電阻式記憶體…等單一元件,期望能突破做出鈣鈦礦雙功能元件。許多研究指出摻雜鹼金屬提升鈣鈦礦太陽能電池性能,而卻無應用在電阻式記憶體上的文獻。
本論文研究分為兩部分。第一部分討論以CH3NH3PbBr3為主,發光二極體元件結構為基礎,改變鍍膜製程和電極大小,嘗試製作具備電阻式記憶體及發光二極體特性的雙功能元件。使用一步法來製備薄膜,經過在旋塗過程中滴定反溶液、吹氮氣,及改良吹氮氣的裝置後,薄膜表面形貌有大幅提升,但無法製作出平整均勻的薄膜,轉而以兩步法成功製作出均勻且平整的CH3NH3PbBr3薄膜。在每個嘗試改善薄膜的階段,發光二極體皆只出現大面積(6.5mm2)的電極上,而記憶體特性只出現小面積(0.01mm2)的電極上。TPBi從旋塗的方式改為熱蒸鍍來製備改善元件後,大小電極皆只有發光二極體的電壓電流特性而沒有記憶體特性。
第二部分討論的是在鈣鈦礦與ITO基板中間加入PEDOT:PSS修飾能階,提升記憶時間。在鈣鈦礦前驅溶液碘化鉛當中加入不同濃度的碘化鉀觀察其薄膜與電阻式記憶體特性的變化,鈣鈦礦材料是 CH3NH3PbI3,在摻雜5mg/ml及7mg/ml的碘化鉀後碘化鉛及有機鈣鈦礦薄膜表面形貌皆有改善,從PL intensity的提升能明確看到薄膜非複合缺陷態的減少,記憶體元件的切換次數從原本的45次增加到207次。而摻雜過量的碘化鉀,不僅使鈣鈦礦薄膜產生孔洞、PL和XRD強度下降,也讓元件的記憶次數下降到剩18次和on/off ratio從原本的103變為102。
In this study, we used anti-solvent and N2 flow treatment during the spin coating process to improve the film quality in a one-step method. It is very difficult to control the experimental parameters and film quality by dropping the anti-solvent during the spin coating process.
The N2 flow treatment during the spin coating process can significantly improve the film quality. Under the pressure of 8kgf/cm2, the film quality is improved compared with the film quality of 6kgf/cm2. Even if the film quality can be improved by increasing the pressure but the effect is limited.
In this study, we found that the incorporation of an appropriate amount of potassium iodide in lead iodide solution can improve the lead iodide film, and also significantly improve the perovskite film reduce the defects of the film after the formation of perovskite.
After adding PEDOT:PSS in the middle of perovskite and ITO, the energy level and passivation surface can be modified so that the carrier can be injected into the active layer more smoothly, and the on/off ratio is slightly improved. It was found that the number of switching endurance of RRAM device incorporated with 7 mg/ml potassium iodide was increased from 45 times to 207 times.
1. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
2. Stranks, S.D., et al., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013. 342(6156): p. 341-344.
3. Etgar, L., et al., Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. Journal of the American Chemical Society, 2012. 134(42): p. 17396-17399.
4. Liu, D. and T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 2013. 8: p. 133.
5. Xing, G., et al., Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>. Science, 2013. 342(6156): p. 344-347.
6. Tan, Z.-K., et al., Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014. 9: p. 687.
7. Wang, Y., et al., Improved performance of CH3NH3PbI3 based photodetector with a MoO3 interface layer. Organic Electronics, 2017. 49: p. 355-359.
8. Yoo, E., et al., Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH3NH3PbI3-xClx/FTO structure. Journal of Materials Chemistry C, 2016. 4(33): p. 7824-7830.
9. Young-Hoon, K., et al., Multicolored Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes. Advanced Materials, 2015. 27(7): p. 1248-1254.
10. Abdi-Jalebi, M., et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature, 2018. 555: p. 497.
11. Wangen, Z., et al., Alkali Metal Doping for Improved CH3NH3PbI3 Perovskite Solar Cells. Advanced Science, 2018. 5(2): p. 1700131.
12. Choi, J., et al., Enhanced Endurance Organolead Halide Perovskite Resistive Switching Memories Operable under an Extremely Low Bending Radius. ACS Applied Materials & Interfaces, 2017. 9(36): p. 30764-30771.
13. Nardes, A.M., et al., Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol. Organic Electronics, 2008. 9(5): p. 727-734.
14. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501: p. 395.
15. Feichi, Z., et al., Low-Voltage, Optoelectronic CH3NH3PbI3−xClx Memory with Integrated Sensing and Logic Operations. Advanced Functional Materials, 2018. 28(15): p. 1800080.
16. Liu, Y., et al., Resistive switching memory based on organic/inorganic hybrid perovskite materials. Vacuum, 2016. 130: p. 109-112.
17. Yuan, M., et al. Organometal tri-halide perovskite resistive switching device with PMMA electrode interlayer. in 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC). 2017.
18. Cheng, B., et al., PMMA interlayer-modulated memory effects by space charge polarization in resistive switching based on CuSCN-nanopyramids/ZnO-nanorods p-n heterojunction. Scientific Reports, 2015. 5: p. 17859.
19. Singh, R., et al., Synthesis, characterization, and dye-sensitized solar cell fabrication using solid biopolymer electrolyte membranes. High Performance Polymers, 2016. 28(1): p. 47-54.
20. Saliba, M., et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016.
21. Jacobsson, T.J., et al., Extending the Compositional Space of Mixed Lead Halide Perovskites by Cs, Rb, K, and Na Doping. The Journal of Physical Chemistry C, 2018. 122(25): p. 13548-13557.
22. Gibbons, J.F. and W.E. Beadle, Switching properties of thin Nio films. Solid-State Electronics, 1964. 7(11): p. 785-790.
23. Hickmott, T.W., Low‐Frequency Negative Resistance in Thin Anodic Oxide Films. Journal of Applied Physics, 1962. 33(9): p. 2669-2682.
24. Wong, H.S.P., et al., Metal–Oxide RRAM. Proceedings of the IEEE, 2012. 100(6): p. 1951-1970.
25. Hasan, H., K. Krisztian, and C.D. Wright, Can conventional phase-change memory devices be scaled down to single-nanometre dimensions? Nanotechnology, 2017. 28(3): p. 035202.
26. Meena, J., et al., Overview of Emerging Non-volatile Memory Technologies. Vol. 9. 2014. 1-33.
27. Chiu, F.-C., A Review on Conduction Mechanisms in Dielectric Films. Advances in Materials Science and Engineering, 2014. 2014: p. 18.
28. Liu, Q., et al., Resistive switching memory effect of ZrO2 films with Zr+ implanted. Applied Physics Letters, 2008. 92(1): p. 012117.
29. Lim, E. and R. Ismail, Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey. Electronics, 2015. 4(3): p. 586.
30. Tappertzhofen, S., et al., Proton mobility in SiO2 thin films and impact of hydrogen and humidity on the resistive switching effect. Vol. 1330. 2011.
31. Abunahla, H., et al., Sol-gel/drop-coated micro-thick TiO2 memristors for γ-ray sensing. Vol. 184. 2016.
32. Liang, K.-D., et al., Single CuOx Nanowire Memristor: Forming-Free Resistive Switching Behavior. ACS Applied Materials & Interfaces, 2014. 6(19): p. 16537-16544.
33. Zheng, K., et al., An Optically Readable InGaN/GaN RRAM. IEEE Transactions on Electron Devices, 2016. 63(6): p. 2328-2333.
34. Chang, C.-W., et al., Electrically and Optically Readable Light Emitting Memories. Scientific Reports, 2014. 4: p. 5121.
35. Landi, G., et al., Evidence of Bipolar Resistive Switching Memory in Perovskite Solar Cell. IEEE Journal of the Electron Devices Society, 2018. 6: p. 454-463.
36. Zhongmin, Z., et al., Stable Inverted Planar Perovskite Solar Cells with Low-Temperature-Processed Hole-Transport Bilayer. Advanced Energy Materials, 2017. 7(22): p. 1700763.
37. Zuo, C., et al., One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 2018. 46: p. 185-192.
38. Im, J.-H., H.-S. Kim, and N.-G. Park, Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Materials, 2014. 2(8): p. 081510.
39. Huang, H., et al., Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy, 2016. 27: p. 352-358.
40. Wu, H.-T., et al., Memory properties of (110) preferring oriented CH3NH3PbI3 perovskite film prepared using PbS-buffered three-step growth method. Thin Solid Films, 2018. 660: p. 320-327.