簡易檢索 / 詳目顯示

研究生: 陳福星
Chen, Fu-Hsing
論文名稱: 氫化非晶矽薄膜電晶體應用於光學互動顯示器電路設計及特性探討
Circuit Design and Characteristic Investigation of Hydrogenated Amorphous Silicon Thin-Film Transistors for Optical Interactive Displays
指導教授: 林志隆
Lin, Chih-Lung
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 85
中文關鍵詞: 氫化非晶矽薄膜電晶體主動式矩陣液晶顯示器光學互動顯示器光感測器閘極驅動電路
外文關鍵詞: active matrix liquid crystal displays (AMLCDs), gate driver, hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs), optical interactive displays, optical sensors
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫化非晶矽薄膜電晶體因其製程成熟、低製作成本及高度均勻性,廣泛應用於主動式矩陣液晶顯示器中,且在可見光照射下能根據亮度大小產生相對應之光電流,藉此將光學訊號轉換為電訊號並可輕易實現輸入光源的位置偵測,使得氫化非晶矽薄膜電晶體成為光學互動顯示器中光感測器及周邊驅動電路的理想製程選擇。然而當光感測電路整合於顯示面板中,共用控制訊號使得周邊驅動電路之負載上升,傳統架構因氫化非晶矽薄膜電晶體載子移動率較低將導致驅動能力不足。此外,由於環境光也屬可見光波段,將使氫化非晶矽薄膜電晶體產生較高之光電流而導致光感測器誤輸出。因此,加強氫化非晶矽薄膜電晶體之驅動能力及改善光感測器於環境光中之可靠度,是整體實現光學互動顯示器之重點。
    本論文之主旨為針對基於氫化非晶矽薄膜電晶體之光學互動顯示器提出兩個可增強驅動能力之閘極驅動電路,並提出一個共用環境光補償架構且可同時偵測三種光學輸入訊號之精簡光感測電路。此外,針對光感測電路於環境光操作之可靠度,提出改善感測薄膜電晶體元件長時間老化問題之驅動方法,並藉由探討薄膜電晶體在不同色溫之白光照射下產生之光電流差異,進一步分析光感測電路於不同應用環境時之穩定性。本論文第一個電路為使用二階段抬升架構改善輸出波形上升及下降時間之閘極驅動電路,藉由將驅動電晶體閘極電壓在電路輸出點開始充電及放電前抬升至更高電壓,可在不加大元件的尺寸下達到增強驅動能力的效果。第二個閘極驅動電路則是進一步改善驅動電晶體閘極電壓抬升時受到寄生電容及臨界電壓影響之問題,提出利用額外直流電壓準位之驅動方法,可使驅動電晶體之閘極電壓在電路操作各階段維持在更高準位,大幅改善電路之驅動能力。第三個電路為光感測電路,其使用結合傳統彩色濾光片之非晶矽光學薄膜電晶體,此電路可同時偵測三種不同顏色之雷射光筆訊號,且輸出結果不受環境光強度所影響,使光學互動顯示器具有更高的感測器密度並提高位置偵測之準確度。
    另外,本論文藉由探討氫化非晶矽薄膜電晶體在長時間偏壓的光電流特性變化,提出降低閘極偏壓之驅動方法藉此延長整體感測模組之使用壽命,並建立薄膜電晶體光電流之等效模型,同時以HSPICE模擬及實際電路量測驗證提出方法之可行性。在論文的最後則探討覆蓋不同彩色濾光片之薄膜電晶體照射不同色溫白光時產生光電流的差異,藉由量測到之光電流比例推測不同色溫白光在可見光波段的能量分布與彩色濾光片的相對穿透度的相對關係,可作為設計感測器元件尺寸之參考,並以不同設計參數之光感測電路驗證在不同色溫白光照射下皆可以維持正常操作,確保光學互動顯示器在不同環境下之穩定性。

    Hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs) have been widely used in active matrix liquid crystal displays (AMLCDs) due to their mature process, low fabrication cost, and high uniformity. Moreover, a-Si:H TFTs can generate corresponding photocurrents according to the intensity of illuminated visible light. By transforming optical signals into electrical signals, detecting the position of the optical input signals can be easily realized. These characteristics make a-Si:H TFTs an ideal choice for the process of optical sensors and peripheral driver circuits for optical interactive displays. However, when the optical sensors are integrated into the pixel matrix of displays, the control signals of the optical sensors are shared with those of the pixel circuits, increasing the loadings of the driver circuits. The conventional structure cannot provide sufficient driving capability due to the low mobility of a-Si:H TFTs. Since the ambient light belongs to the category of visible light, a-Si:H TFTs under illumination also induce large photocurrents, leading to false detection. Therefore, improving the driving capability of a-Si:H TFTs and enhancing the reliability of optical sensors under illumination of ambient light are both significant in realizing optical interactive displays.
    This dissertation proposes two gate driver circuits for enhancing driving capability, and one optical sensor that can detect three optical input signals and uses only one ambient light compensation structure. In addition, a driving method to improve the degradation of the sensing TFT is proposed. To analyze the reliability of the optical sensors under different circumstances, differences among the photocurrents from TFTs under illumination of white light with different color temperatures are investigated. This first proposed circuit is a gate driver that uses its two-step-bootstrapping structure to improve the rising and falling times of the output waveforms. The gate voltage of the driving TFT is increased to higher voltage levels before charging and discharging the output node, enhancing the driving capability without enlarging the size of the driving TFT. The second proposed gate driver circuit uses an additional direct current (DC) voltage level to improve the increase of the gate voltage affected by the parasitic capacitance and the threshold voltage. The gate voltage of the driving TFT can be maintained at higher voltages during the circuit operation, enhancing the driving capability of the circuit. The third proposed circuit is an optical sensor that uses a-Si:H TFTs combining the processes of conventional color filters. The proposed optical sensor can detect the optical signals of three colors coming from the laser pointers. A simple ambient light compensation structure is used to prevent intense ambient illumination from affecting the sensing results, increasing the sensor density of an interactive display, and thereby achieving accurate detection of the position of the optical inputs.
    Furthermore, this dissertation investigates the changes in photocurrent from a-Si:H TFTs under long-term stress, and a driving method is proposed for extending the lifetime of sensing structures. Models of the photocurrents of the TFT are established, and the feasibility of the proposed method is verified by simulations and measurements. Finally, the differences of photocurrents induced by a-Si:H TFTs are investigated under the illumination of white light with different color temperatures. The effective illumination of white LEDs passing through different color filters can be deduced using the current ratios obtained by TFTs covered with different color filters. Thus, the reference of designing the sizes of devices in optical sensors is established, and its feasibility is verified by the fabricated optical sensors with different designed parameters. The optical sensor operates without false detection under illumination of white light with different color temperatures, ensuring the stability of optical interactive displays under different circumstances.

    Chinese Abstract i English Abstract iii Acknowledgements v Contents vi List of Tables viii List of Figures ix Chapter 1 Introduction 1.1 Background 1 1.2 Motivation 3 1.3 Dissertation organization 7 Chapter 2 Enhancing Driving Performance of a-Si:H Thin-Film Transistors Gate Drivers for Display Applications 2.1 Issues of prior works 8 2.2 Circuit schematic and operation 10 2.3 Results and discussions 13 2.4 Summary 18 Chapter 3 Compact Optical Sensor Based on Thin-Film Transistors for Large Interactive Displays Using Red/Green/Blue Laser Pointers 3.1 Issues of prior works 29 3.2 New optical sensor 31 3.3 Results and discussions 32 3.4 Summary 34 Chapter 4 Long-Term Behavior of a-Si:H Thin-Film Transistors Covered with Color Filters for Use in Optical Sensors 4.1 Issues of prior works 39 4.2 Device characteristics 40 4.3 Results and discussions 43 4.4 Summary 46 Chapter 5 Optical Properties of a-Si:H Thin-Film Transistors under Illumination of White Light with Different Color Temperatures 5.1 Issues of prior works 54 5.2 Device characteristics 55 5.3 Results and discussions 57 5.4 Summary 60 Chapter 6 Conclusions and Future Works 6.1 Conclusions 72 6.2 Future Works 73 Reference 75 Biography 81 Publication List 82

    [1] C. T. Liu, “Revolution of TFT LCD technology,” J. Display Technol., vol. 3, no. 4, pp. 342–350, Dec. 2007.
    [2] T. Muraoka and H. Ikeda, “Selection of display devices used at man-machine interfaces based on human factors,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 501–506, Apr. 2004.
    [3] D. Pasquariello, M. C. J. M. Vissenberg, and G. J. Destura, “Remote-touch: a laser input user–display interaction technology,” J. Display Technol., vol. 4, no. 1, pp. 39–46, Mar. 2008.
    [4] W. den Boer, A. Abileah, P. Green, T. Larsson, S. Robinson, and T. Nguyen, “56.3: Active matrix LCD with integrated optical touch screen,” in SID Symp. Dig. Tech. Papers, May 2003, vol. 34, no. 1, pp. 1494–1497.
    [5] A. Abileah, W. den Boer, T. Larsson, T. Baker, S. Robinson, R. Siegel, N. Fickenscher, B. Leback, T. Griffin, and P. Green, “59.3: Integrated optical touch panel in a 14.1” AMLCD,” in SID Symp. Dig. Tech. Papers, vol. 35, no. 1, pp. 1544–1547, May 2004.
    [6] C.-L. Lin, C.-E. Wu, P.-S. Chen, P.-C. Lai, J.-S. Yu, C. Chang, and Y.-H Tseng, “Optical pixel sensor of hydrogenated amorphous silicon thin-film transistor free of variations in ambient illumination,” IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2777–2785 Nov. 2016.
    [7] C.-L. Lin, C.-E. Wu, P.-S. Chen, C.-H. Chang, C.-C. Hsu, J.-S. Yu, C. Chang, and Y.-H. Tseng, “Hydrogenated amorphous silicon thin-film transistor based optical pixel sensor with high sensitivity under ambient illumination,” IEEE Electron Device Lett., vol. 37, no. 11, pp. 1446–1449, Nov. 2016.
    [8] C.-L. Lin, P.-S. Chen, C.-H. Chang, J.-S. Yu, C. Chang, and Y.-H. Tseng, “A hydrogenated amorphous silicon thin-film transistor optical pixel sensor for ameliorating influences of ambient light and reflected light,” IEEE J. Electron Devices Soc., vol. 5, no. 4, pp. 262–265, Jul. 2017.
    [9] C.-L. Lin, C.-E. Wu, W.-C. Chiu, W.-L. Wu, and J.-S. Yu, “Optical properties of hydrogenated amorphous silicon thin-film transistor-based optical pixel sensor in three primary colors,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 2, pp. 6000108, Mar.–Apr. 2018.
    [10] C.-L. Lin, C.-E. Wu, C.-L. Lee, F.-H. Chen, Y.-S. Lin, W.-L. Wu, and J.-S. Yu, “Alternately controlled optical pixel sensor system using amorphous silicon thin-film transistors,” IEEE Trans. Ind. Electron., vol. 66, no. 9, pp. 7366–7375, Sep. 2019.
    [11] C.-W. Kuo, C.-L. Hung, Y.-Y. Liao, L.-H. Tsai, B.-S. Tzeng, S.-P. Lu, Y.-J. Liu, C.-H. Lin, M.-F. Chiang, Y.-C. Lin, and J.-S. Yu, “Photo sensors embedded within TFT-LCD with three primary colors optical touch function,” in SID Symp. Dig. Tech. Papers, Jun. 2019, vol. 50, no. 1, pp. 600–603.
    [12] Y.-H. Tai, C.-C. Tu, and S. Yeh, “Using amorphous silicon gap-type thin film transistor as ambient light sensors and proximity sensors for smartphones,” IEEE Sens. Lett., vol. 3, no. 10, Oct. 2019.
    [13] C.-L. Lin, C.-D. Tu, M.-C. Chuang, K.-W. Chou, C.-C. Hung, C.-W. Wang, M.-F. Chiang, and Y.-C. Chen, “A highly stable a-Si:H TFT gate driver circuit with reducing clock duty ratio,” in Proc. SID Symp. Dig. Tech. Papers, pp. 1360–1362, May 2010.
    [14] J. W. Choi, J. I. Kim, S. H. Kim, and J. Jang, “Highly reliable amorphous silicon gate driver using stable center-offset thin-film transistors,” IEEE Trans. Electron Devices, vol. 57, no. 9, pp. 2330–2334, Sep. 2010.
    [15] L.-W. Chu, P.-T. Liu, and M.-D. Ker, “Design of integrated gate driver with threshold voltage drop cancellation in amorphous silicon technology for TFT-LCD application,” J. Display Technol., vol. 7, no. 12, pp. 657–664, Dec. 2011.
    [16] C. Liao, C. He, T. Chen, D. Dai, S. Chung, T. S. Jen, and S. Zhang, “Design of integrated amorphous-silicon thin-film transistor gate driver,” J. Display Technol., vol. 9, no. 1, pp. 7–16, Jan. 2013.
    [17] C.-L. Lin, M.-H. Cheng, C.-D. Tu, C.-C. Hung, and J.-Y. Li, “2-D–3-D switchable gate driver circuit for TFT-LCD applications,” IEEE Trans. Electron Devices, vol. 61, no. 6, pp. 2098–2105, Jun. 2014.
    [18] C.-L. Lin, M.-H. Cheng, C.-D. Tu, C.-E. Wu, and F.-H. Chen, “Low-power a-Si:H gate driver circuit with threshold-voltage-shift recovery and synchronously controlled pull-down scheme,” IEEE Trans. Electron Devices, vol. 62, no. 1, pp. 136–142, Jan. 2015.
    [19] C. Liao, Z. Hu, D. Dai, S. Chung, T. S. Jen, and S. Zhang, “A compact bi-direction scannable a-Si:H TFT gate driver,” J. Display Technol., vol. 11, no. 1, pp. 3–5, Jan. 2015.
    [20] Z. Hu, C. Liao, W. Li, L. Zeng, C. Y. Lee, and S. Zhang, “Integrated a-Si:H gate driver with low-level holding TFTs biased under bipolar pulses,” IEEE Trans. Electron Devices, vol. 62, no. 12, pp. 4044–4050, Dec. 2015.
    [21] J. H. Kim, S. Wang, J. Oh, K. Park, and Y. S. Kim, “Gate driver circuit with pre-bootstrapping using organic TFTs,” in Proc. SID Symp. Dig. Tech. Papers, pp. 1408–1411, May 2017.
    [22] C.-L. Lin, P.-C. Lai, P.-C. Lai, T.-C. Chu, and C.-L. Lee, “Bidirectional gate driver circuit using recharging and time-division driving scheme for in-cell touch LCDs,” IEEE Trans. Ind. Electron, vol. 65, no. 4, pp. 3585–3591, Apr. 2018.
    [23] J. Seo and H. Nam, “Low power and low noise shift register for in-cell touch display applications,” IEEE J. Electron Devices Soc., vol. 6, pp. 726–732, Mar. 2018.
    [24] G.-T. Zheng, P.-T. Liu, M.-C. Wu, L.-W. Chu, and M.-C. Yang, “Design of bidirectional and low power consumption gate driver in amorphous silicon technology for TFT-LCD application,” J. Display Technol., vol. 9, no. 2, pp. 91–99, Feb. 2013.
    [25] C. Liao, Z. Hu, J. Li, W. Li, S. Cao, and S. Zhang, “A simple low temperature workable a-Si:H TFT integrated gate driver on array,” in Proc. SID Symp. Dig. Tech. Papers, pp. 1316–1319, May 2015.
    [26] D. Geng, Y. F. Chen, M. Mativenga, and J. Jang, “30 μm-pitch oxide TFT-based gate driver design for small-size, high-resolution, and narrow-bezel displays,” IEEE Electron Device Lett., vol. 36, no. 8, pp. 805–807, Aug. 2015.
    [27] C.-H. Chiang and Y. Li, “A novel driving method for high-performance amorphous silicon gate driver circuits in flat panel display industry,” J. Display Technol., vol. 12, no. 10, pp. 1051–1056, Oct. 2016.
    [28] C.-L. Lin, F.-H. Chen, M.-X. Wang, P.-C. Lai, and C.-H. Tseng, “Gate driver based on a-Si:H thin-film transistors with two-step-bootstrapping structure for high-resolution and high-frame-rate displays,” IEEE Trans. Electron Devices, vol. 64, no. 8, pp. 3494–3497, Aug. 2017.
    [29] B. D. Choi and O. K. Kwon, “Line time extension driving method for a-Si TFT-LCDs and its application to high definition televisions,” IEEE Trans. Consum. Electron, vol. 50, no. 1, pp. 33–38, Feb. 2004.
    [30] M. J. Powell, “The physics of amorphous-silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 36, no. 12, pp. 2753–2763, Dec. 1989.
    [31] S. M. GadelRab and S. G. Chamberlain, “The source-gated amorphous silicon photo-transistor,” IEEE Trans. Electron Devices, vol. 44, no. 10, pp. 1789–1794, Oct. 1997.
    [32] C.-W. Chen, T.-C. Chang, P.-T. Liu, H.-Y. Lu, K.-C. Wang, C.-S. Huang, C.-C. Ling, and T.-Y. Tseng, “High-performance hydrogenated amorphous-Si TFT for AMLCD and AMOLED applications,” IEEE Electron Device Lett., vol. 26, no. 10, pp. 731–733, Oct. 2005.
    [33] M. R. Esmaeili-Rad, A. Sazonov, and A. Nathan, “High stability, low leakage nanocrystalline silicon bottom gate thin film transistors for AMOLED displays,” in IEDM Tech. Dig., 2006, pp. 1–4.
    [34] S. H. Kim, E. B. Kim, J. H. Oh, J. H. Hur, and J. Jang, “A 2-in. a-Si:H TFT-LCD with embedded backlight control TFT sensors with various channel widths,” J. Soc. Inf. Display, vol. 16, no. 3, pp. 415–419, 2008.
    [35] Y.-H. Tai, L.-S. Chou, Y.-F. Kuo, and S.-W. Yen, “Gap-type a-Si TFTs for backlight sensing application,” J. Display Technol., vol. 7, no. 8, pp. 420–425, Aug. 2011.
    [36] Y. Lee, I. Omkaram, J. Park, H.-S. Kim, K.-U. Kyung, W. Park, and S. Kim, “A α-Si:H thin-film phototransistor for a near-infrared touch sensor,” IEEE Electron Device Lett., vol. 36, no. 1, pp. 41–43, Jan. 2015.
    [37] H. Ou, K. Wang, C. Ding, S. Z. Deng, N. S. Xu, and J. Chen, “Dual-gate photosensitive a-Si:H thin-film transistor with a π-shape channel for large-area imaging and sensing,” IEEE Electron Device Lett., vol. 36, no. 12, pp. 1373–1375, Dec. 2015.
    [38] C. van Berkel and M. J. Powell, “The photosensitivity of amorphous silicon thin film transistors,” J. Non-Crystalline Solids, vol. 77–78, no. 2, pp. 1393–1396, 1985.
    [39] C. van Berkel and M. J. Powell, “Photo-field effect in amorphous silicon thin-film transistors,” J. Appl. Phys., vol. 60, no. 4, pp. 1521–1527, 1986.
    [40] Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, and J. Goodman, “Ultra-thin, high-resolution, flexible electronic ink displays addressed by a-Si active-matrix TFT backplanes on stainless steel foil,” in IEDM Tech. Dig., 2002, pp. 389–392.
    [41] C. Brown, H. Kato, K. Maeda, and B. Hadwen, “A continuous-grain silicon-system LCD with optical input function,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2904–2912, Dec. 2007.
    [42] J. Chen and C. T. Liu, “Technology advances in flexible displays and substrates,” IEEE Access, vol. 1, pp. 150–158, May 2013.
    [43] C.-L. Lin, F.-H. Chen, M.-X. Wang, P.-C. Lai, and C.-H. Tseng, “Gate driver based on a-Si:H thin-film transistors with two-step-bootstrapping structure for high-resolution and high-frame-rate displays,” IEEE Trans. Electron Devices, vol. 64, no. 8, pp. 3494–3497, Aug. 2017.
    [44] T. M. Fernández-Caramés and P. Fraga-Lamas, “A review on humancentered IoT-connected smart labels for the Industry 4.0,” IEEE Access, vol. 6, pp. 25939–25957, 2018.
    [45] B. Hekmatshoar, “Electrical stability and flicker noise of thin-film heterojunction FETs on poly-Si substrates,” IEEE Access, vol. 7, pp. 77063–77069, Jun. 2019.
    [46] H. Ou, K. Wang, J. Chen, A. Nathan, S. Z. Deng, and N. S. Xu, “Dual-gate photosensitive FIN-TFT with high photoconductive gain and near-UV to near-IR responsivity,” in IEDM Tech. Dig., 2016, pp. 814–817.
    [47] W. D. Boer, T. Nguyen, and P. J. Green, “Image sensor with photosensitive thin film transistors and dark current compensation,” U.S. Patent 8 289 429 B2, Oct. 16, 2012.
    [48] D. Zhou, M. Wang, and S. Zhang, “Degradation of amorphous silicon thin film transistors under negative gate bias stress,” IEEE Trans. Electron Devices, vol. 58, no. 10, pp. 3422–3427, Oct. 2011.

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE