| 研究生: |
陳柏維 Chen, Bo-Wei |
|---|---|
| 論文名稱: |
大氣邊界層流經圓柱形建築物之野外量測與數值模擬比較 Comparison of Field Measurements and Numerical Simulations for Atmospheric Boundary Layer Flow over a Cylindrical Building |
| 指導教授: |
吳毓庭
Wu, Yu-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 野外量測 、數值模擬 、建築物尾流 、光達 |
| 外文關鍵詞: | Field measurement, Numerical simulation, Building wake, LiDAR, Fluent |
| 相關次數: | 點閱:170 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用野外量測與數值模擬兩種方法來探討大氣邊界層流與一大型圓柱形建築物產生之尾流的相互作用,此建築物名為台南大遠百。在野外量測中,我們使用都普勒光達WindCube@V2 offshore來量測此建築物產生之尾流。在個案研究中,我們將會介紹此建築物的幾何外型與建築規格,以及我們在野外量測所使用之光達的規格與計算方法。透過LiDAR量測得到的資料採用統計分析,包含了時間平均的水平風速、垂直方向的速度梯度、紊流強度與垂直方向的動量通量。利用快速傅立葉轉換(FFT)方法得到的頻譜分析結果,將用來對此光達所量測到的資料提供可靠度。
在Fluent模擬中,使用大渦旋模擬法求解暫態的Navier-Stokes (N-S)紊流方程式,其中具有固定係數的WALE模型被用來參數化亞網格尺度(SGS)應力。整體計算空間採用六面體網格,總數約為228萬。基於LiDAR量測的分析,我們選用兩個入流條件來執行Fluent模擬,分別命名為Case A與Case B。野外量測與數值模擬的結果比較在Case B中呈現了更好的一致性。從這個比較我們可以推斷出,在Fluent模擬中所使用的入流條件對模擬的結果有很大的影響。具有較小標準差以及平行於建築物位置與LiDAR位置的入流條件將會對野外量測與Fluent模擬的結果比較提供更好的一致性。
In this study, we carried out a field measurement and Fluent simulations to investigate the interaction between atmospheric boundary layer flow and the wake produced from a tall cylindrical building named Tainan FE21. In the field measurement, a profiling Doppler wind LiDAR, WindCube@V2 offshore, was used to measure the wake produced from the building. In the case study, the details of the building and the LiDAR specifications will be presented. Turbulence statistics of the wind data measured from the LiDAR include time-averaged horizontal wind velocity, vertical velocity gradient, turbulence intensity, and vertical momentum flux. The power spectrum analysis was carried out using the method of fast Fourier transform (FFT) to support the reliability of the wind data measured from the LiDAR.
In the Fluent simulations, the Navier-Stokes (N-S) equations of unsteady turbulent flow were solved using the Large Eddy Simulation technique in which the Wall-Adapting Local Eddy-Viscosity (WALE) model with a constant WALE coefficient is used to parameterize the subgrid-scale (SGS) stress. The hexahedral meshes are set up in the entire computational domain with a total number of approximately 2.28 million. Based on the analysis of the LiDAR measurements, two inflow conditions were observed and used to perform two Fluent simulations, which are named Case A and Case B. The comparison of the results between the field measurement and the Fluent simulations shows better agreement in the Case B study. From this comparison, we can conclude that the inflow conditions used in the Fluent simulations have great influence on the simulation results. The inflow condition which has smaller standard deviation and is parallel to a line crossing the building position and the LIDAR deployment position will present better agreement for the comparison of the results between the field measurement and the Fluent simulations.
1. Holmes, J.D., 2001. Wind Loading of Structures. CRC Press.
2. Peterka, J. A., R. N. Meroney, and K. M. Kothari. "Wind flow patterns about buildings." Journal of Wind Engineering and Industrial Aerodynamics 21.1 (1985): 21-38.
3. Ferreira, A. D., A. C. M. Sousa, and D. X. Viegas. "Prediction of building interference effects on pedestrian level comfort." Journal of Wind Engineering and Industrial Aerodynamics 90.4 (2002): 305-319.
4. Mochida, Akashi, and Isaac YF Lun. "Prediction of wind environment and thermal comfort at pedestrian level in urban area." Journal of wind engineering and industrial aerodynamics 96.10 (2008): 1498-1527.
5. Kim, Jae-Jin, and Jong-Jin Baik. "A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k–ε turbulence model." Atmospheric Environment 38.19 (2004): 3039-3048.
6. Leuzzi, Giovanni, and Paolo Monti. "Particle trajectory simulation of dispersion around a building." Atmospheric Environment 32.2 (1998): 203-214.
7. Frost, Walter, and Alireza M. Shahabi. "A field study of wind over a simulated block building." (1977).
8. Woo, Herbert Gwo-Chang, Jon A. Peterka, and Jack E. Cermak. "Wind-tunnel measurements in the wakes of structures." (1977).
9. Ro-Poulsen, Helge, et al. "Ozone deposition in relation to canopy physiology in a mixed conifer forest in Denmark." Chemosphere 36.4 (1998): 669-674.
10. Binopoulos, E., D. Foussekis, and F. Mouzakis. "Experimental Investigation of Complex terrain Boundary Layer with a 100m Mast." European Wind Energy Conference, Copenhagen, 2001.
11. Floors, Rogier, et al. "Atmospheric boundary layer wind profile at a flat coastal site-wind speed lidar measurements and mesoscale modeling results." Advances in Science and Research 6 (2011): 155.
12. Wang, H., et al. "Wind measurements from arc scans with Doppler wind lidar." Journal of Atmospheric and Oceanic Technology 32.11 (2015): 2024-2040.
13. Zheng, De-qian, Ai-she Zhang, and Ming Gu. "Improvement of inflow boundary condition in large eddy simulation of flow around tall building." Engineering Applications of Computational Fluid Mechanics 6.4 (2012): 633-647.
14. Yan, Bowen, and Qiusheng Li. "Large-eddy simulation of wind effects on a super-tall building in urban environment conditions." Structure and Infrastructure Engineering 12.6 (2016): 765-785.
15. Lang, Steven, and Eamon McKeogh. "LIDAR and SODAR measurements of wind speed and direction in upland terrain for wind energy purposes." Remote Sensing 3.9 (2011): 1871-1901.
16. Barthelmie, R. J., et al. "Offshore wind turbine wakes measured by SODAR." Journal of Atmospheric and Oceanic Technology 20.4 (2003): 466-477.
17. Kumar, M. Shravan, et al. "Doppler SODAR observations of the temperature structure parameter during monsoon season over a tropical rural station, Gadanki." Journal of Earth System Science 120.1 (2011): 65-72.
18. Sgouros, G.; Helmis, C. G.; Degleris, J. "Development and application of an algorithm for the estimation of mixing height with the use of a SODAR-RASS remote sensing system." International journal of remote sensing, 2011, 32.22: 7297-7313.
19. Viola, Angelo Pietro, and Igor Petenko. "Some aspects of the local atmospheric circulation in the Castelporziano Estate derived from sodar wind measurements." Rendiconti Lincei 26.3 (2015): 275-282.
20. Sathe, Ameya, et al. "Can wind lidars measure turbulence?." Journal of Atmospheric and Oceanic Technology 28.7 (2011): 853-868.
21. Rhodes, Michael E.; Lundquist, Julie K. "The effect of wind-turbine wakes on summertime US Midwest atmospheric wind profiles as observed with ground-based doppler lidar." Boundary-Layer Meteorology, 2013, 149.1: 85-103.
22. Iungo, Giacomo Valerio; Wu, Yu-Ting; Porté-Agel, Fernando. "Field measurements of wind turbine wakes with lidars." Journal of Atmospheric and Oceanic Technology, 2013, 30.2: 274-287.
23. Ferrara, R., et al. "Mercury emissions into the atmosphere from a chlor-alkali complex measured with the lidar technique." Atmospheric Environment. Part A. General Topics 26.7 (1992): 1253-1258.
24. Bennett, M., et al. "Joint application of Doppler Lidar and differential absorption lidar to estimate the atomic mercury flux from a chlor-alkali plant." Atmospheric Environment 40.4 (2006): 664-673.
25. Drew, Daniel R., Janet F. Barlow, and Siân E. Lane. "Observations of wind speed profiles over Greater London, UK, using a Doppler lidar." Journal of Wind Engineering and Industrial Aerodynamics 121 (2013): 98-105.
26. Lim, Kiros EW, et al. "Full-scale flow measurement on a tall building with a continuous-wave Doppler Lidar anemometer." Journal of Wind Engineering and Industrial Aerodynamics 154 (2016): 69-75.
27. Bowen, A. J., and D. Lindley. "A wind-tunnel investigation of the wind speed and turbulence characteristics close to the ground over various escarpment shapes." Boundary-Layer Meteorology 12.3 (1977): 259-271.
28. Maruyama, T., and H. Ishizaki. "A wind tunnel test on the boundary layer characteristics above an urban area." Journal of Wind Engineering and Industrial Aerodynamics 28.1-3 (1988): 139-148.
29. Kastner-Klein, P., and E. J. Plate. "Wind-tunnel study of concentration fields in street canyons." Atmospheric Environment 33.24 (1999): 3973-3979.
30. Kubota, Tetsu, et al. "Wind tunnel tests on the relationship between building density and pedestrian-level wind velocity: Development of guidelines for realizing acceptable wind environment in residential neighborhoods." Building and Environment 43.10 (2008): 1699-1708.
31. Wu, Yu-Ting, and Fernando Porté-Agel. "Simulation of turbulent flow inside and above wind farms: model validation and layout effects." Boundary-Layer Meteorology (2013): 1-25.
32. Choi, E. C. C. "Simulation of wind-driven-rain around a building." Journal of Wind Engineering and Industrial Aerodynamics 46 (1993): 721-729.
33. Stathopoulos, Ted, and B. A. Baskaran. "Computer simulation of wind environmental conditions around buildings." Engineering Structures 18.11 (1996): 876-885.
34. Jiang, Yi, and Qingyan Chen. "Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy simulation." Building and Environment 37.4 (2002): 379-386.
35. Jiang, Yi, et al. "Natural ventilation in buildings: measurement in a wind tunnel and numerical simulation with large-eddy simulation." Journal of Wind Engineering and Industrial Aerodynamics 91.3 (2003): 331-353.
36. Kim, Jae-Jin, and Jong-Jin Baik. "A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k–ε turbulence model." Atmospheric Environment 38.19 (2004): 3039-3048.
37. Meroney, Robert N., et al. "Wind-tunnel and numerical modeling of flow and dispersion about several building shapes." Journal of Wind Engineering and Industrial Aerodynamics 81.1 (1999): 333-345.
38. Yang, Wei, and Ming Gu. "Numerical simulation of steady flow around a 3D high-rise building." Tongji Daxue Xuebao/Journal of Tongji University (Natural Science) (China) 31.6 (2003): 647-651.
39. Blocken, Bert, Jan Carmeliet, and Ted Stathopoulos. "CFD evaluation of wind speed conditions in passages between parallel buildings—effect of wall-function roughness modifications for the atmospheric boundary layer flow." Journal of Wind Engineering and Industrial Aerodynamics 95.9 (2007): 941-962.
40. Park, Cheol-Woo, and Sang-Joon Lee. "Free end effects on the near wake flow structure behind a finite circular cylinder." Journal of Wind Engineering and Industrial Aerodynamics 88.2 (2000): 231-246.
41. Dargahi, Bijan. "The turbulent flow field around a circular cylinder." Experiments in Fluids 8.1 (1989): 1-12.
42. Richter, A., and E. Naudascher. "Fluctuating forces on a rigid circular cylinder in confined flow." Journal of Fluid Mechanics 78.03 (1976): 561-576.
43. Feather, Arwen L. "Circular or Rectangular Ground Plans: Some Costs and Benefits." (1996).
44. https://zh.wikipedia.org/wiki/%E9%A6%99%E6%A0%BC%E9%87%8C%E6%8B%89%E5%8F%B0%E5%8D%97%E9%81%A0%E6%9D%B1%E5%9C%8B%E9%9A%9B%E5%A4%A7%E9%A3%AF%E5%BA%97
45. http://www.fnetravel.com/chinese/tainanhotels/shangri-la-far-eastern-plaza-h.html
46. http://www.cc.ntut.edu.tw/~t101370539/map.html
47. https://zh.wikipedia.org/wiki/%E8%87%BA%E5%8D%97%E5%B8%82%E8%A1%8C%E6%94%BF%E5%8D%80%E5%8A%83
48. https://www.google.com.tw/maps/@22.9969796,120.2149753,385m/data=!3m1!1e3?hl=zh-TW&authuser=0
49. https://www.google.com.tw/maps/@22.9956241,120.2160499,3a,75y,275.44h,92.98t/data=!3m6!1e1!3m4!1sIyFKkTD--_KtmE9KEDmKNg!2e0!7i13312!8i6656?hl=zh-TW&authuser=0
50. http://www.aeroexpo.online/prod/leosphere/product-171095-3841.html
51. Windcube@V2 LIDAR REMOTE SENSOR User Manual VERSION 05 Rev. 01
52. Stull, Roland B. An introduction to boundary layer meteorology. Vol. 13. Springer Science & Business Media, 2012.
53. https://pixta.jp/tags/%E6%96%B9%E8%A7%92%20%E6%96%B9%E4%BD%8D%20%E8%A8%98%E5%8F%B7%20%E5%8C%97?search_type=2
54. Nishioka, Michio, and Hiroshi Sato. "Measurements of velocity distributions in the wake of a circular cylinder at low Reynolds numbers." Journal of Fluid Mechanics 65.01 (1974): 97-112.
55. Alonzo-García, A., C. del C. Gutiérrez-Torres, and Jose Alfredo Jimenez-Bernal. "Large Eddy Simulation of the Subcritical Flow over a U-Grooved Circular Cylinder." Advances in Mechanical Engineering 6 (2014): 418398.
56. Alonzo-García, A., et al. "Large eddy simulation of the subcritical flow over a V grooved circular cylinder." Nuclear Engineering and Design 291 (2015): 35-46.
57. Smagorinsky, Joseph. "General circulation experiments with the primitive equations: I. The basic experiment." Monthly weather review 91.3 (1963): 99-164.
58. Porté-Agel, Fernando, et al. "Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms." Journal of Wind Engineering and Industrial Aerodynamics 99.4 (2011): 154-168.
59. Wu, Yu-Ting, and Fernando Porté-Agel. "Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations." Boundary-layer meteorology 138.3 (2011): 345-366.
60. "Fluent 15.0 user guide." In Turbulence, chapter 4, pp.103, 2013.