| 研究生: |
李明錡 Li, Ming-Chi |
|---|---|
| 論文名稱: |
利用導納頻譜法分析n型摻雜之有機發光元件 Analysis of N-type Doping Organic Light Emitting Devices by Using Admittance Spectroscopy |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 有機電激發光二極體 、n型摻雜 、導納頻譜 、活化能 |
| 外文關鍵詞: | OLED, n-type doping, admittance spectroscopy, activation energy |
| 相關次數: | 點閱:138 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論有兩個研究主軸,第一個主軸是增加電子注入效率以提升元件表現,第二個主軸為使用導納頻譜法作數據分析,並將研究主軸分成三個部分來進行實作討論。
第一部分首先建立有機半導體元件的等效電路模型,並且用導納頻譜法量測電容與電導數值。實驗結果顯示,NPB與MADN的元件經導納頻譜法分析出的薄膜等效電容和等效電阻參數相當準確,並且再進一步利用變溫系統觀察不同的薄膜反應時間,可以求出活化能,其數據也與研究論文相當接近。因此我們驗證了導納頻譜的分析是精準且可信服的。
第二部分的研究主要為探討不同的MADN厚度製成的光電元件ITO/NPB/Alq3/MADN/LiF/Al的電性表現。我們利用導納頻譜中的寄生電阻概念,並觀測I-V曲線和元件的亮度效率等量測手法,得到MADN的厚度為5nm時的元件有最佳的表現。
第三部分,我們利用有機電洞阻擋材料MADN摻雜電子注入材料碳酸銣(Rb2CO3)作一電子傳輸層,形成ITO/NPB/Alq3/MADN: Rb2CO3/LiF/Al的元件結構,探討不同摻雜濃度對電致發光的表現影響,再用導納頻譜量測活化能、建立不同摻雜濃度的電子傳輸層的能帶變化圖。實驗結果發現,當摻雜濃度越高,活化能會隨之降低,代表載子注入能障降低了,但是33%的摻雜濃度讓注入能障降的太低反而使電子較難以傳輸進發光層,致使25%的元件表現比33%的元件好。最後將等效電阻、活化能、載子遷移率等參數,用數學公式的運算可以求得薄膜之載子濃度。這些參數對於OLED的科學研究和討論極為重要。
關鍵字:有機電激發光二極體、n型摻雜、導納頻譜、活化能
In this thesis, an n-type OLED with Rb2CO3 doped in MADN as electron transporting layer (ETL) is investigated. The equivalent circuit model of electron-only devices with incorporation of Rb2CO3 into MADN as ETL are successfully developed by applying temperature-dependence admittance spectroscopy measurement (ASM). Frequency response of the ETL is affected by environmental temperature, and the shifting of G/F peak can obtain activation energy. Fermi level will shift more toward vacuum level with the increasing of Rb2CO3 doping percentage, leading to decreased equivalent resistance of ETL, reduced electron injection barrier, and improved conductivity. Thus the maximum luminance of electroluminescent device enhanced from 15530 to 26694 cd/m2, the maximum luminance efficiency raised from 3.9 to 5.1 cd/A, and the operation voltage at 100 cd/m2 decreased from 5.4 to 4.2 V when 25% Rb2CO3 is doped into MADN as ETL. Meanwhile, if the Rb2CO3 doping concentration is exceed 25%, it would be too high to make the electron hard to inject to emitting layer, resulting in device decay. In addition, some significant physics parameters of organic materials such as parallel resistance, density of state, and carrier concentration are cable to be obtained via proper math models. It is useful for device researches and material analysis.
Keywords:OLED、n-type doping、admittance spectroscopy、activation energy
參考文獻
M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys. 38, p. 2042( 1963).
C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett. 48, p.183(1986)
C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett. 51, p.913(1987).
J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns and A. Holmes, Nature. 347, p.539 (1990).
Y. Ohmore, and K. YoShino, Jap. J. Appl. Phys. 30, p.L938(1991).
Y. Ohmore, and K. YoShino, Jap. J. Appl. Phys. 30, p.L941(1991).
Y. Kijima, N. Asai, and S. Tamura, Jpn. J. Appl. Phys. 38, p. 5274(1999).
C. Wang, G. Y. Jung, Y. Hua, C. Pearson, M. R. Bryce, M. C. Petty, A. S. Batsanov, A. E. Goeta, and J. A. K. Howard, Chem Mater. 13, p.1167(2001).
K. Okumoto and Y. Shirota, Appl. Phys. Lett. 79, p.1231(2001).
W. Xu, M. A. Khan, Y. Bai, X. Y. Jiang, Z. L. Zhang, and Q. Q. Zhu, Curr. Appl. Phys. 9, p.732(2009).
J. Ma, X. Y. Jiang, Z. Liang, J. Ciao, X. Zhang, and Z. L. Zhang, Semicond. Sci. Technol. 24, p.035009(2009).
J. T. Lim, J. W. Park, J. W. Kwon, G. Y. Yeon, K. Lhm, and K. J. Lee, J. Electrochem. Soc. 160, G1-G5(2013).
Z. H. Xiao, X. M. Wu, Y. L. Hua, L. Wang, W. T. B, J. J. Bai, X. Mu, and S-G. Yin, CHIN. PHYS. LETT. 31, p.047803(2014).
J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, and K. Leo, S. Liu, Appl. Phys. Lett. 80, p.139(2002).
R. H. Friend, R.W. Gymer, A. B. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D.A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature. 397, p.121(1999).
H. Scher and E. W. Montroll, Phys. Rev. B, 12, p.2455(1975).
P. M. Borsenberger, D. S. Weiss, ‘’Organic Photoreceptors for Imaging System”, Marcel Dekker, New York, p.239(1993).
孫嘉鴻,黃滿芳著,”半導體與發光原理”,國立臺灣科學教育館出版(2014).
A. Cester, D. Bari, J. Franarin, N. Wrachien, G. Meneghesso, S. Xia, V. Adamovich, J. J. Brown, Microelectron. Reliab. 50, p.1866(2010).
L. S. Hung, L. R. Zheng, Appl. Phys. Lett. 78, p.679(2001).
Y. Qiu, Y. Gao, L. Wang, Synth Met. 130, p.235(2002).
Z. B. Deng, X. M. Ding, S. T. Lee, Appl. Phys. Lett. 74,p.2222(1999).
M. H. Ho, Y. S. Wu, S. W. Wen, M. T. Lee, and T. M. Chen, Appl. Phys. Lett. 89, p.252903(2006).
D. Y. Zhou, S. D. Cai, W. Gu, L. S. Liao, and S. T. Lee, Appl. Phys. Lett. 97, p.223302(2010).
B. Qu, Z. Gao, H. S. Yang, L. X. Xiao. Z. J. Chen, and Q. H. Gong, Appl. Phys. Lett. 104, p.043305(2014).
J. Zhao, Y. Cai, J. P. Yang, H. X. Wei, and Y. H. Deng, Appl. Phys. Lett. 101, p.193303(2012).
P. C. Kao, J. Y. Wang, J. H. Ling, C. H. Yang, Thin Solid Films. 527, p.338(2013).
R. Zheng, W. Huang, W. Xu, and Y. Cao, Synth Met. 162, p.1919(2012).
D. A. Neamen, Semiconductor Physics & Devices (Wiley, New York,1981).
S. M. Sze, Physics of Semiconductor Devices (Wiley, New York,1981).
E. H. Rhoderick and R. H. Williams, Metal-Semiconductor-Contacts (Clearendon, Oxford, 1988).
A. J. Champbell and D. D. C. Bradley, J. Appl. Phys. 86, p.5004(1999).
I. H. Campbell, P. S. Davids, D. L. Smith, N. N. Barashkov, and J. P. Ferraris, Appl. Phys. Lett. 72, p.1863(1998).
P. S. Davids, I. H. Campbell, and D. L. Smith, J. Appl. Phys. 82, p.6319(1997).
R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A119, p.173(1928).
Y. Yang andA .J. Heeger, Appl. Phys. Lett. 77, p.694(1995).
Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger, J. Appl. Phys. 77, p.694(1995).
H. Vestweber, J. Pommerehne, R. Sander, R. F. Mahrt, A. Greiner, W. Heitz, and H. Ba ̈ssler, Synth. Met. 68, p.263(1995).
P. S. Davids, S. M. Kogan, I. D. Parker, and D. L. Smith, Appl. Phys. Lett. 69, p.2270(1996).
D. V. Khramtchenkov, H. Ba ̈ssler, and V. I. Arkhipov, J. Appl. Phys. 79, p.9283(1996).
D. J. Pinner, R. H. Friend, and N. Tesslerm J. Appl. Phys. 86, p.5116(1999).
P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, J. Appl. Phys. 79, p.7991(1996).
S. Karg, M. Meier, and W. Riess, J. Appl. Phys. 82, p.1951(1997).
A. J. Champbell, D. D. C. Bradley, and D. G. Lidzey, J. Appl. Phys. 82, p.6326(1997).
M. Dongge, I. A. Hu ̈mmelgen, B. Hu, and F. E. Karasz, J. Appl. Phys. 86, p.3181(1999).
Y. He and J. Kanicki, Appl. Phys. Lett. 76, p.661(2000).
D. Ma, I. A. Hu ̈mmelgen, X. Jing, Z. Hong, L. Wang, X. Zhao, F. Wang, and F. E. Karasz, J. Appl. Phys. 87, p.312(2000).
K. C. Kao, W. Hwang, Electrical Transport in Solids (Pergamon, Oxford, 1981).
N. F. Mott and R. W. Gurney, Electronic Process in Ionic Crystals (Dover Publication, New York, 1940).
W. Helfrich, Physics and Chemistry of the Organic Solid State 3, p.1(1967).
M. A. Lambert and P. Marks, Current Injection in Solids (Academic, New York, 1970).
H. C. F. Martens, J. N. Huiberts, and P. W. M. Blom, Appl. Phys. Lett. 77, p.1852(2000).
P. W. M. Blom and M. C. J. M. Vissenberg, Mat. Sci & Eng. 27, p.53(2000).
P. W. M. Blom, H. C. F. Martens, and J. N. Huiberts, Synth. Met. 121, p.1621(2001).
I. H. Campbell, D. L. Smith, C. J. Neef, and J. P. Ferraris, Appl. Phys. Lett. 74. P.2809(1999).
J. C. Scott, P. J. Brock, J. R. Salem, S. Ramos, G. G. Mallianras, S. A. Carter, and L. Bozano, Synth. Met. 111-112, p.289(2000).
K. Umger, Phys. Stat. Sol. 2, p.1279 (1962).
J. G. Simmons and M. C. Tam, Phys. Rev. B 7, p.3706(1973).
G. P.Owen, J. Sworakowski, J. M. Thomas, D. F. Williams, and J. O. Williams, J. Chem. Soc. Faraday II 70, p.853(1974).
A. J. Campbell, M. S. Weaver, D. G. Lidzey, and D. D. C. Bradley, J. Appl. Phys. 84, p.6737(1998).
M. Koehler, and I. A. Hu ̈mmelgen, J. Appl. Phys. 87, p.3074(2000).
S. B. Lee, K. Yoshino, J. Y. Park, and Y. W. Park, Phys. Rev. B 61, p.2151(2000).
B. Chen C. S. Lee, P. Webb, Y. C. Chan, W. Gambling, H. Tian, and W. Zhu, Jpn. J. Appl. Phys. Part 1,39, p.1190(2000).
M. T. Hsieh, C. C. Chang, and J. F. Chen, Appl. Phys. Lett. 89, p.103510(2006).
J. H. Seo, K. H. Lee, B. M. Seo, J. R. Koo, S. J. Moon, J. K. Park, S. S. Y, and Y. K. Kim, Org. Electron. 11, p.1605(2010).
Z. Y. Xia, J. H. Su, C. S. Chang, and C. H. Chen, J. Lumin. 135, p.323(2013).
J. H. Li, J. H, and Y. Yang, Appl. Phys. Lett. 90, p.173505(2007).
OLED:有機電激發光材料與元件 = OLED:organic electroluminescent materials & devices, 初版 ed. 臺北市(2005).
C. Giebeler, H. Antoniads, D. D. C. Bradley, and Y. Shirota, J. Appl. Phys. 85, p.608(1999).
W. Li, R. A. Jones, S. C. Allen, J. C. Heikenfeld, and A. J. Steckl, J. Disp. Technol, 2, p.143(2006).
Y. C. Chen, P. C. Kao, and S. Y. Chu, Opt. Express. 18, A167(2010).