簡易檢索 / 詳目顯示

研究生: 林平昌
Lin, Ping-Chang
論文名稱: 採用含粒子群優化法之電網形成轉換器控制在混合再生能源系統經模組化多階轉換器之高壓直流鏈饋入多機電力系統之穩定度分析
Stability Analysis of Hybrid Renewable Energy Systems Fed to a Multimachine Power System through a High-Voltage Direct-Current Link based on a Modular Multilevel Converter Using Grid-Forming Converter Control with Particle Swarm Optimization
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 185
中文關鍵詞: 混合再生能源系統模組化多階轉換器高壓直流鏈多機電力系統電網跟隨控制電網形成控制粒子群優化法穩定度
外文關鍵詞: Hybrid renewable energy system, modular multilevel converter, high-voltage direct-current link, multi-machine power system, grid-following control, grid-forming control, particle swarm optimization, stability
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種基於永磁式同步發電機之離岸風力發電系統以及太陽能發電系統所組成的混合再生能源系統,透過三端模組化多階轉換器之高壓直流鏈連接至IEEE 14匯流排之多機電力系統。本論文進一步提出三種基於轉換器的控制策略,分別為電網跟隨控制、電網形成控制與採用粒子群優化法之電網形成控制。此研究針對電網跟隨控制缺乏慣性支援與電網形成控制中參數不確定性所造成的影響,提出相對應的解決方案。在穩態與小信號穩定度分析方面,本論文針對多種情境下比較各控制策略對系統性能的影響;在動態暫態模擬方面,本論文則探討系統在不同擾動條件下的響應,並分析三種控制策略之比較結果。

    This thesis proposes a hybrid renewable energy system that connects to a multi-machine power system based on the IEEE 14-bus configuration through a three-terminal high-voltage direct current link based on a modular multilevel converter. The hybrid renewable energy system consists of an offshore wind farm based on a permanent-magnet synchronous generator and a solar photovoltaic power plant. Furthermore, this study introduces three converter-based control strategies: grid-following control, grid-forming control, and grid-forming control integrated with particle swarm optimization. The research addresses the lack of inertia support in grid-following control and the impact of parameter uncertainty in grid-forming control by proposing corresponding solutions. For the steady-state and small-signal stability analysis, the system performance under various scenarios is compared for each control strategy. For the dynamic and transient simulations, the system responses under different disturbance conditions are examined, and the effectiveness of the three control strategies is comparatively analyzed.

    摘要 I Abstract II 誌謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XVI 符號說明 XX 第一章 緒論 1 1-1 研究背景與動機 1 1-2 相關文獻回顧 3 1-3 本論文貢獻 7 1-4 研究內容概述 8 第二章 研究系統之架構與數學模型 10 2-1 前言 10 2-2 離岸風力發電系統 13 2-2-1 風渦輪機之數學模型 14 2-2-2 旋角控制器之數學模型 15 2-2-3 質量-彈簧-阻尼器系統之數學模型 16 2-2-4 永磁同步發電機之數學模型 17 2-2-5 機械側轉換器之數學模型 20 2-2-5 RCL濾波器一、海上傳輸線一與陸上傳輸線二數學模型 21 2-3 太陽能發電系統 22 2-3-1 光伏電池之數學模型 23 2-3-2 光伏模組之數學模型 26 2-3-2 光伏陣列之數學模型 27 2-3-2 直流對直流升壓轉換器之數學模型 28 2-3-3 RCL濾波器二與陸上傳輸線三數學模型 32 2-4 三端模組化多階轉換器之高壓直流傳輸系統 32 2-4-1 模組化多階轉換器之數學模型 33 2-4-2 模組化多階轉換器之主要控制器數學模型 36 2-4-3 模組化多階轉換器之環流抑制控制器數學模型 38 2-4-4 高壓直流傳輸線之數學模型 39 2-5 多機電力系統 40 2-5-1 簡化型雙軸同步發電機之數學模型 42 2-5-2 激磁機之數學模型 44 2-5-3 調速機之數學模型 46 2-5-4 蒸氣渦輪機之數學模型 47 2-5-5 負載與傳輸線網路之數學模型 49 第三章 系統側轉換器之控制策略 52 3-1 前言 52 3-2 電網跟隨控制策略 53 3-2-1 鎖相迴路 53 3-2-2 電壓控制 55 3-2-3 電流控制 56 3-3 電網形成控制策略 57 3-3-1 實功率-頻率控制、虛功率-電壓控制與虛擬同步機 58 3-4 粒子群優化法之電網形成控制策略 60 3-4-1 粒子群優化理論 60 3-4-2 粒子群優化法之電網形成控制策略流程圖與實現 61 第四章 穩態與小訊號穩定度分析 65 4-1 前言 65 4-2 功率潮流分析 66 4-3 特徵值分析 76 4-4 根軌跡分析 81 4-4-1 案例一 81 4-4-2 案例二 93 4-5 頻域分析 106 4-5-1 波德圖分析 107 4-5-2 奈奎斯特圖分析 108 4-5-3 尼可拉圖分析 109 第五章 動態與暫態分析 111 5-1 前言 111 5-2 系統之動態分析 111 5-2-1 案例三分析 112 5-2-2 案例四分析 119 5-3 系統之暫態分析 126 5-3-1 案例五分析 126 5-3-2 案例六分析 133 第六章 結論與未來研究方向 139 6-1 結論 139 6-2 未來研究方向 141 參考文獻 143 附錄:本論文研究系統架構所使用之參數 148

    [1] IEA, “Electricity 2025 report,” [Online]. Available: https://www.iea.org/reports/electricity-2025/executive-summary.

    [2] T. Xaue, J. Lyu, and H. Wan, “A complete impedance model of a PMSG-based wind energy conversion system and its effect on the stability analysis of MMC-HVDC connected offshore wind farms,” IEEE Trans. Energy Conversion, vol. 36, no. 4, pp. 3449-3461, Dec. 2021.

    [3] B. Huang, Q. Xin, X. Zhao, and Z. Yuan, “Analysis of voltage characteristics of islanded system with PV plants transmitted over MMC-HVDC,” in Proc. 2023 International Conference on Power System Technology, Jinan, China, Sep. 21-22, 2023, pp. 1-5.

    [4] R. Sapkota, S. Kolluri, and J. Adhikari, “MMC based multi-terminal HVDC subsea power transmission system with the integration of offshore renewable energy,” in Proc. 2017 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia), Auckland, New Zealand, Dec. 04-07, 2017, pp. 15-20.

    [5] A. Radwan and M. A. Elshenawy, “Grid-forming voltage-source inverter for hybrid wind-solar systems interfacing weak grids,” IEEE Open Journal of Power Electronics, vol. 5, pp. 956-975, Jun. 2024.

    [6] L. Yang, Q. Lin, R. Huang, and Z. Dan, “VSG control of grid-connected inverter based on improved PSO,” in Proc. 3rd International Symposium on Electrical, Electronics and Information Engineering (ISEEIE 2023), Hangzhou, China, Jun. 30, 2023, pp. 1-4.

    [7] M. M. K. Prince, M. T. Arif, and A. Gargoom, “Modeling, parameter measurement, and control of PMSG-based grid-connected wind energy conversion system,” Journal of Modern Power Systems and Clean Energy, vol. 9, no. 5, pp. 1054-1065, Sep. 2021.

    [8] G. Soundarya, R. Sitharthan, and C. K. Sundarabalan, “Design and modeling of hybrid DC/AC microgrid with manifold renewable energy sources,” IEEE Canadian Journal of Electrical and Computer Engineering, vol. 44, no. 2, pp. 130-135, Mar. 2021.

    [9] S. Kar, S. Banerjee, and C. K. Chanda, “Stepwise modelling and analysis of a PV module in matlab/simulink,” in Proc. 2021 International Conference on Intelligent Technologies (CONIT), Hubli, India, Jun. 25-27, 2021, pp. 1-5.

    [10] N. Dhimmar, A. Patel, and G. Patel, “Performance analysis of P&O MPPT technique for PV panel and array integration with boost converter: An analytical and MATLAB simulation approach,” in Proc. 2025 International Conference on Sustainable Energy Technologies and Computational Intelligence (SETCOM), Gandhinagar, India, Feb. 21-23, 2025, pp. 11-16.

    [11] J. Cao, C. Dong, and X. Yu, “Modeling and rekasius substitution stability analysis of the multi-terminal MMC-HVDC cyber-physical system,” in Proc. 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, Oct. 10-14, 2021, pp. 3388-3394.

    [12] 李庭佑,以模組化多階轉換器為基礎之多饋入式高壓直流輸電系統連接再生能源之穩定度改善分析,國立成功大學電機工程學系碩士論文,2024年7月。

    [13] P. M. Anderson, Power System Control and Stability, Piscataway, NJ, USA: Wiley-IEEE Press, 1977.

    [14] P. Kundur, Power System Stability and Control, New York, NY, USA: McGraw-Hill, 1994.

    [15] B. Pournazarian, R. Sangrody, and M. Lehtonen, “Simultaneous optimization of virtual synchronous generators parameters and virtual impedances in islanded microgrids,” IEEE Trans. Smart Grid, vol. 13, no. 6, pp. 4202-4217, Nov. 2022.

    [16] S. Fu, Y. Sun, and X. Hou, “A general [P Q]-[ω V] model of hybrid GFM/GFL multi-VSC systems: power oscillation analysis and suppression method,” IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 5, no. 4, pp. 1362-1375, Oct. 2024.

    [17] F. Han, X. Zhang, and M. Li, “Stability control for grid-connected inverters based on hybrid-mode of grid-following and grid-forming,” IEEE Trans. Industrial Electronics, vol. 71, no. 9, pp. 10750-10760, Sep. 2024.

    [18] B. Zhang, X. Du, and X. Du, “Stability modeling of a three-terminal MMC-HVDC transmission system,” IEEE Trans. Power Delivery, vol. 37, no. 3, pp. 1754-1763, Jun. 2022.

    [19] C. Zhang, J. Huang, and G. Song, “Non-unit ultra-high-speed line protection for multi-terminal hybrid LCC/MMC HVDC system and its application research,” IEEE Trans. Power Delivery, vol. 36, no. 5, pp. 2825-2838, Oct. 2021.

    [20] IEA, “Electricity 2025 report,” [Online]. Available: https://www.iea.org/reports/electricity-2025/executive-summary.

    [21] Y. Yu, K. Shi, Z. Dai, and Y. Liu, “Dynamic power control of PMSG-WTG for low voltage recovery in distribution network,” in Proc. 2023 5th Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, Mar. 23-26, 2023, pp. 790-795.

    [22] 武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年7月。

    [23] M. Gupta and R. Gupta, “Performance evaluation of boost DC-DC converter for different loads to extract maximum power from solar PV module,” in Proc. 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, Feb. 11-13, 2022.

    [24] K. R. Lokhande and P. Raviteja, “Solar PV integrated MPPT controlled high gain DC-DC converter,” in Proc. 2024 IEEE 4th International Conference on Sustainable Energy and Future Electric Transportation (SEFET), Hyderabad, India, Jul. 31/Aug. 03, 2024.

    [25] Z. Li, Z. Wang, Y. Wang, and T. Yin, “Accurate impedance modeling and control strategy for improving the stability of DC system in multiterminal MMC-Based DC grid,” IEEE Trans. Industry Applications, vol. 61, no. 1, pp. 597-606, Jan./Feb. 2025.

    [26] X. Gao and D. Zhou, “Seamless switching method between grid-following and grid-forming control for renewable energy conversion systems,” IEEE Trans. Power Electronic, vol. 35, no. 10, pp. 10026-10049, Oct. 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE