簡易檢索 / 詳目顯示

研究生: 顏沛琦
Yen, Pei-Chi
論文名稱: 利用感應耦合電漿輔助式熱燈絲化學氣相沉積製備高品質結晶碳化矽薄膜
High quality crystalline silicon carbide thin film deposit by Inductively Coupled Plasma Hot Wire Chemical Deposition
指導教授: 李文熙
Li, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 62
中文關鍵詞: 熱燈絲化學氣相沉積碳化矽多晶膜
外文關鍵詞: HFCVD, hot filament, silicon carbide, polycrystalline
相關次數: 點閱:138下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係研究以感應耦合電漿輔助式熱燈絲化學氣相沉積在低溫製程下,製備多晶型碳化矽薄膜。碳化矽是一種具有寬能隙、高機械強度且與生物體不排斥之材料,而大量運用在光、機、電以及生醫領域。但是在傳統製程上形成碳化矽需要極高的結晶溫度因而無法適用於耐溫性較差之基板,如:銦錫氧化物、高分子聚合物…等。因此,開發低溫碳化矽之製程技術已是各領域所關注之研究。
    本論文以熱燈絲化學氣相沉積製備碳化矽薄膜。使用之金屬觸媒為鎢絲線在高溫下熱裂解反應氣體,因此首先探討鎢絲之使用壽命。研究中對鎢絲在不同使用製程中進行實驗,以光學顯微鏡可觀察到,在利用碳化保護之鎢絲線在相同製程條件下其壽命較無碳化處理之鎢絲線長且更能穩定維持其反映溫度。金屬熱燈絲其溫度極高而會造成熱輻射影響,使基板與燈絲之間距離影響薄膜沉積甚鉅。本研究調整金屬熱燈絲與基板之間距離並以X光繞射儀分析,發現在燈絲距離10mm ~ 20mm處其沉積效果最好。
    在本研究中係利用矽甲烷、甲烷與氫氣之混和氣體系統沉積多晶碳化矽薄膜。研究中首先探討矽甲烷與甲烷流量比例對結晶碳化矽行程之影響,並以X光繞射儀分析其晶向結構,其中觀察到隨矽甲烷比例升高,薄膜逐漸由碳化矽晶相轉變成矽晶相,反之,逐步提升甲烷流量則可得到碳化矽結晶。
    接著論文中探討以感應耦和電漿輔助沉積碳化矽薄膜,觀察沉積情況可發現在電漿能量提升超過50W時,會產生大量矽粉末沉積且沉積速率下降。當電漿能量繼續提升至500W,由場發式電子顯微鏡圖像顯示幾乎沒有薄膜沉積效果。最後,在電漿能量10W時,具有最佳之沉積效果。
    研究中利用碳化矽之異質磊晶需碳化緩衝層之基礎原理,在矽基板上沉積高度有序之石墨結晶藉以導向碳化矽之成長方向,由X光繞射圖譜可看出以高度有序石墨處理之基板成長之碳化矽在(111)面之繞射峰強度較無石墨處理之炭化矽強。
    本論文最後探討在碳化矽不同氣體氛圍下退火,以紅外線光譜儀觀測氫鍵結確實被去除,但在空氣以及氮氫混合氣體退火後,X光繞射圖譜可觀測出氧化物以及氮化物之形成。

    This thesis is to research to make the polycrystalline silicon carbide (SiC) film under low temperature by Inductively Coupled Plasma Hot Filament Chemical Vapor Deposition (ICP-HFCVD, HWCVD). Silicon carbide is a material which is wide ban-gap, provided with excellent mechanical strength and biocompatibility, and have been widely used in photo electricity, machinery, semiconductor and biology fields. Due to the conventional procedure of forming SiC needs high temperature to crystallize, so it's unable to be applicable on low thermal stability substrate, ex: ITO, Polymer. Therefore, the development of low temperature SiC's process technology is an interesting research in recent years.

    中文摘要 Abstract 第一章 緒論 1-1 研究背景.....................................................1 1-1-1 前言與研究動機.......................................1 1-1-2 立方晶碳化矽.....................................2 1-2 碳化矽的理論基礎................................4 1-2-1結晶結構.......................................4 1-2-2材料特性........................................6 第二章 實驗理論基礎與文獻回顧 2-1 化學氣相沉積回顧.............................................8 2-1-1 化學氣相沉積反應原理...................................8 2-1-2 反應氣體系統........................................10 2-1-3 利用ICP-HWCVD沉積碳化矽薄膜..........................11 2-1-4 ICP-HWCVD沉積碳化矽薄膜在矽基板上......................14 2-2 實驗製程以及分析設備.........................................15 2-2-1 感應耦合電漿輔助是熱燈絲化學氣相沉積(ICP-HWCVD).......15 2-2-2 場發式掃描電子顯微鏡(FESEM)............................16 2-2-3 X光繞射分析儀(XRD).................................17 2-2-4 穿透式電子顯微鏡(TEM)..............................18 2-2-5拉曼光譜儀...........................................19 第三章 實驗材料與製程步驟 3-1 實驗材料...........................................20 3-1-1 基板...............................................20 3-1-2 製程氣體..........................................20 3-1-3金屬燈絲材料.......................................22 3-2 實驗製程...............................................26 3-2-1 鎢絲的碳化.........................................26 3-2-2 碳化矽的沉積.........................................28 3-2-3 沉積製程回顧.........................................30 第四章 實驗結果與討論 4-1 矽甲烷與甲烷之流量.........................................33 4-2 鎢燈絲與基板間距對沉積之影響...............................35 4-3 ICP電漿輔助沉積..........................................38 4-4 石墨層輔助碳化矽沉積.........................................43 4-5 不同氛圍下退火之效果.........................................49 4-6 鎢燈絲之碳化與使用壽命...................................52 第五章 結論與未來計畫 5-1 結論...............................................57 5-2 未來計畫...........................................58 文獻回顧

    [1] Remigijus Vasiliauskas (2012), “Sublimation Growth and Performance of Cubic Silicon Carbide”, Linköping University

    [2] Urban Forsberg (2001), “CVD Growth of Silicon Carbide for High Frequency Applications“, Linköping University

    [3] Locke, Christopher (2009), “Growth of 3C-SiC on (111)Si using hot-wall chemical vapor deposition”, University of South Florida

    [4] H. Föll (2004), “Semiconductor technology”, University of Kiel

    [5] M. B. Yu, “Deposition of nanocrystalline cubic silicon carbide films using the hot-filament chemical-vapor-deposition method”, J. Appl. Phys., 87, No. 11, 1 (2000)

    [6] Gilberto Vitor Zaia (2002), “Epitaxial growth of Si and 3C-SiC by Chemical Vapor Deposition”, Technischen Universität München

    [7] Casady, J. B, “"Status of Silicon Carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review”, Solid-State Electronics 39, no. 10 (1996) 1409-1422.

    [8] Harris GL, “Properties of Silicon Carbide”, London:INSPEC, the Institution of Electrical Engineers, 1995.

    [9] Morkoc H, Journal of Applied Physics, 76 (3), (1994) 1363.

    [10] Saddow SE, “Advances in Silicon Carbide Processing and Applications”, Boston, MA:Artech House Publisher, 2004.

    [11] A. R. Verma, P. Krishna, “Polymorphism and polytypism in Crystals”, Wiley, New York, (1966)
    .
    [12] Philip G. Neudeck (2006),” Silicon Carbide Technology” NASA Glenn Research Center

    [13] M. Mahmoodi, L. Ghazanfari (2012), “Silicon Carbide: A Biocompatible Semiconductor Used in Advanced Biosensors and BioMEMS/NEMS” INTECH

    [14] T. Chen et al., Solar Energy Materials and Solar Cells, 98 (2012) 370–378

    [15] A.G. Aberle, Progress in Photovoltaics: Research and Application, 8 (2000) 473.

    [16] I. Martín et al., Appl. Phys. Lett. 81 (2002) 4461.

    [17] S. Janz et al., Appl. Phys. Lett. 88 (2006) 133516.

    [18] S. R. Kurtz et al., “PASSIVATION OF INTERFACES IN HIGH-EFFICIENCY PHOTOVOLTAIC DEVICES”, National Renewable Energy Laboratory (NREL)

    [19] M. Mehregany, C. A. Zorman, IEEE, 86 (1998) No.8,

    [20] W. N. Sharpe, O. Jadaan et al., JMEMS, 14 (2005) No. 5, 903–913.

    [21] W. R. Ashurst, M. B. J. Wijesundara, et al., Tribology Letters, 17 (2004) No. 2, 195–198.

    [22] M. B. J. Wijesundara, D. Gao, C. Carraro, J. Cryst Growth, 259 No. 1.

    [23] Stephen E. Saddow (2012), “Silicon Carbide Materials for Biomedical Applications”, University of South Florida, Tampa, FL 33620, USA

    [24] RG. Azevedo, J. Zhang (2007), “Silicon carbide coated MEMS strain sensor for harsh environment applications”, University of California at Berkeley.

    [25] C.-H. Wu, C. A. Zorman, Thin Solid Films, 355 (1999) 179-183.

    [26] J. Zhang, R. T. Howe, J Micromech. Microeng., 16 (2006) L1.

    [27] D. Gao, M. B. J. Wijesundara, et al., IEEE Sensors J., 4 (2004) No. 4 441448.

    [28] Yin-tang Yang, Hu-jun Jia,et al., ICSICT, (2008) 730-733.

    [29] C.A. Zorman, S. Rajgopal, et al., Electrochem. Solid-State Lett., 5 (2002) 10 99-101.

    [30] Haixia Zhang, Hui Guo, et al., J. Micromech. Microeng., 17 (2007) 426–431.

    [31] Zhe Chen, Dayu Tian, et al., “Investigation of PECVD SiC Nano Film”, 7th IEEE International Conference on Nanotechnology, 2007, Hong Kong.

    [32] Milan Yazdanfar (2014), “Precursors and defect control for halogenated CVD of thick SiC epitaxial layers”, Linköping University.

    [33] A. C. Jonse, P. O’Brien, CVD of Compound Semiconductors, VCH, Weinheim, 1997.

    [34] R.E.I. Schropp, Thin Solid Films, 517 (2009) 3415–3419.

    [35] Tae-Hyun Gil, Han-Soo Kim et al., Solid-State Electronics 50 (2006) 1510–1514.

    [36] Qijin Cheng, S. Xu et al., Thin Solid Films, 516 (2008) 5991–5995

    [37] Qijin Cheng, S Xu et al., J. Phys. D: Appl. Phys. 5 (2008) 055406.

    [38] Tomohiro Okumura, Physics Research International. 2010 (2010) 164249 P14

    [39] R. F. C. Farrow, J. EIectrochem. 121 (1974) No.7 899–907

    [40] T. R. Hogens et al.(1936), “The Thermal Decomposition of Silane”

    [41] Can. J. Chem, Canadian Journal of Chemistry, 53 (1975) 3580–3590

    [42] M. Yazdanfar, H. Pedersen et al., Journal of Crystal Growth, 390 (2014) 24–29

    [43] M. Fantona, D. Snydera et al., Journal of Crystal Growth, 287 (2006) 359–362

    [44] Tatsuya Urakawa, Ryuhei Torigoe et al., Japanese Journal of Applied Physics 52 (2013) 01AB01

    [46] J. Doyle, R. Robertson et al., J. Appl. Phys. 64 6 (1988) 3215-3223.

    [47] N. Kniffler, A. Pflueger, Thin Solid Films. 517 (2009) 3424–3426

    [48] L. Tong and Y. J. Shi, applied materials & interfaces. 1 9 (2009) 1919–1926

    [49] Y. Komura et al., Thin Solid Films 516 (2008) 633 – 636

    [50] O. Nos et al., Materials Chemistry and Physics 143 (2014) 881-888

    [51] V. A. Izhevskyi, L. A. Genova et al., Cerâmica 46 (2000) no.297

    [52] P. B. Davies, Adv. Mater, 4 (1992) No.11 729-736

    [53] Himanshu S. Jha, J Mater Sci: Mater Electron 26 (2015) 2844–2850

    [54] Stefan Janz (2006), “Amorphous Silicon Carbide for Photovoltaic Applications”, Universität Konstanz

    [55] Franklin Chau-Nan Hong, Diamond & Related Materials 18 (2009) 155–159

    [56] Yasuto Hijikata (2012), “Physics and Technology of Silicon Carbide Devices”

    [57] W. Yu et al., Thin Solid Films 515 (2007) 2949–2953

    [58] Q. Cheeng et al., Thin Solid Films 516 (2008) 5991–5995

    下載圖示 校內:2020-08-27公開
    校外:2020-08-27公開
    QR CODE