簡易檢索 / 詳目顯示

研究生: 李政逸
Li, Zheng-Yi
論文名稱: 應用於單導程心電訊號分析之多端輸入卷積神經網路硬體加速器
A Hardware Accelerator with Multi-Input 1D-CNN for Single-Lead Electrocardiogram Analysis
指導教授: 李順裕
Lee, Shuenn-Yuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 80
中文關鍵詞: 深度學習硬體加速器具多端輸入特性之卷積神經網路資料再利用心律不整PYNQ-Z2
外文關鍵詞: DLA, Multi-Input CNN, Data Reuse, Arrhythmia, PYNQ-Z2
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個應用於單導程心電訊號分析之具有多端輸入特性一維卷積神經網路硬體加速器,可以針對正常心跳、心房早期收縮(Atrial Premature Contraction, APC)、心室早期收縮(Premature Ventricular Contraction, PVC)作偵測辨識。隨著人工智慧(Artificial Intelligence, AI)的崛起,深度學習常被應用於疾病辨識中,其中以卷積神經網路(Convolution Neural Network, CNN)最為著名,藉由海量的心電資料庫進行單一視窗之模型訓練。然而,特定疾病並無法藉由單一心跳辨別,因此本論文添加兩種生醫領域重視的參數作為特徵值,改善傳統卷積網路架構所面臨的弊端。
    本論文的演算法流程可分為三個部分,分別是資料彙總與視窗化處理、訊號預處理、一維卷積神經網路模型分類器。首先,將資料庫數據以R波為中心,建構出共計300點的原始資料(Raw Data),接著針對各視窗進行自動化標籤(Label)。第二部分則是將視窗化數據進行預處理(Preprocessing),最後一部分是神經網路的訓練,將訓練資料透過卷積層進行特徵萃取(Feature Extraction)並交由全連接層進行分類,輸出辨識結果。此外,根據總參數量(Parameter)、總乘法運算量(Multiplication Operator)設計出具有高準確度之輕量化模型。關於硬體實現之部分,使用資料再利用技術減少數據於記憶體階層間傳遞,大幅降低功耗和減少硬體面積。
    本論文將此架構分別實現於軟體演算法及硬體演算法上,其中應用於軟體演算法部分,尚未添加任何特徵值,其準確率為97.31%;添加特徵值後,準確率提高至98.43%。硬體演算法部分,經量化處理後採用16Q6格式,並在架構上使用Convolution Data Reuse及FC parallel Neuron減少從記憶體反覆讀取之消耗,最終硬體準確率為97.62%。驗證部分使用FPGA Xilinx PYNQ Z2開發板,本架構共使用1257個查找表(LUT)、1177個暫存器(FF)、13個乘法器單元(DSP)、6個I/O port,以及BRAM總容量為9KB,進行分類運算之運行時間(Run Time)為2.4465ms、功耗0.107W、量能(Energy-Efficiency)為96.08 (MOPS/W)。結果顯示所提之架構為高量能(High Throughput and High Energy-Efficiency)且確實能應用於單導程心電訊號之疾病辨識。

    In this work, a hardware accelerator for one-dimensional convolutional neural network with multi-input characteristics for single-lead electrocardiogram analysis has been proposed, which can detect and classify normal heartbeats, atrial premature contractions (APCs), and premature ventricular contractions (PVCs). However, specific diseases cannot be identified through a single heartbeat, so we add two biomedical parameters as features to improve the drawbacks faced by traditional convolutional neural network structures. The standards for feature selection are also provided. With the optimization of the total number of parameters and multiplication operators, a lightweight model with high accuracy and low parameter has been designed. The MIT-BIH Arrhythmia Database[3] is used that contains 48 half-hour ECG signals recorded from different patients and marked by at least two doctors. The accuracy of software simulation is 97.31% without adding any features, and it increases to 98.43% after adding features. The DLA is implemented on Xilinx PYNQ-Z2 FPGA board. The latency is 2.4465ms during classification. The total power consumption is 0.107W in 1MHz operation frequency. The energy-efficiency is 96.08 (MOPS/W), and the accuracy can achieve 97.62% with the 16Q6 format quantization.

    中文摘要 I 致謝 VIII 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究背景 3 1.3 論文架構 6 第二章 心電圖以及MIT-BIH心律不整資料庫介紹 7 2.1 心電圖及MIT-BIH Database背景介紹 7 2.1.1 正常心電圖與具疾病其對應之心電圖 7 2.1.2 心律不整資料庫之註解 11 第三章 軟體系統架構實現 13 3.1 人工智慧背景介紹 13 3.1.1 機器學習 14 3.1.2 深度學習 18 3.2 訊號預處理 19 3.2.1 視窗化 19 3.2.2 標準分數 24 3.3 卷積神經網絡 24 3.3.1 卷積層 (Convolution Layer) 25 3.3.2 池化層 (Pooling Layer) 26 3.3.3 激活函數 (Activation Function) 27 3.3.4 全連接層 (Fully Connected Layer) 28 3.4 特徵值介紹 29 3.4.1 特徵值挑選 (Feature Selection) 30 3.4.2 特徵值降維 (Feature Reduction) 32 3.5 最佳化模型 35 第四章 硬體系統架構實現 40 4.1 深度學習加速器(Deep Learning Accelerator)之硬體架構 40 4.1.1 資料運算單元與控制單元 41 4.2 資料再利用 (Data Reuse) 47 4.2.1 卷積層之資料再利用 48 4.2.2 全連接層之資料再利用 50 4.2.3 第二層卷積運算之四階段運算流程 52 4.3 量化 (Quantization) 56 第五章 驗證與結果 59 5.1 深度學習加速器硬體架構實現 59 5.2 實驗數據與結果 59 5.2.1 軟體模擬結果與數據 59 5.2.2 硬體模擬結果與數據 61 5.2.3 文獻比較 66 第六章 結論與未來展望 69 6.1 結論 69 6.2未來展望 70 參考文獻 71

    [1] World Health Organization, “The top 10 causes of death” Dec. 9, 2020 [online]. Available:https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death, Accessed on Nov. 23, 2022.
    [2] Ministry of health and welfare, “110年死因統計結果分析” June 2021 [online]. Available: https://dep.mohw.gov.tw/DOS/lp-5069-113-xCat-y110.html , Accessed on Nov. 23, 2022.
    [3] MIT-BIH Arrhythmia Database. Accessed: Jun. 17, 2022. [Online]. Available: https://www.physionet.org/content/mitdb/1.0.0/
    [4] G. M. Friesen, T. C. Jannett, M. A. Jadallah, S. L. Yates, S. R. Quint and H. T. Nagle, “A comparison of the noise sensitivity of nine QRS detection algorithms,” IEEE Transactions on Biomedical Engineering, vol. 37, no. 1, pp. 85-98, Jan. 1990, doi: 10.1109/10.43620.
    [5] H. D. Hesar and M. Mohebbi, “An Adaptive Kalman Filter Bank for ECG Denoising,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 1, pp. 13-21, Jan. 2021, doi: 10.1109/JBHI.2020.2982935.
    [6] Xu, Xiaowen et al. “Adaptive Motion Artifact Reduction Based on Empirical Wavelet Transform and Wavelet Thresholding for the Non-Contact ECG Monitoring Systems.” Sensors (Basel, Switzerland) vol. 19,13 2916. 1 Jul. 2019, doi:10.3390/s19132916.
    [7] L. -D. Van, D. -Y. Wu and C. -S. Chen, “Energy-Efficient FastICA Implementation for Biomedical Signal Separation,” IEEE Transactions on Neural Networks, vol. 22, no. 11, pp. 1809-1822, Nov. 2011, doi: 10.1109/TNN.2011.2166979.
    [8] THARWAT, Alaa, “Independent component analysis: An introduction,” Applied Computing and Informatics, 2020.
    [9] A. S. Barhatte, R. Ghongade and S. V. Tekale, “Noise analysis of ECG signal using fast ICA,” Conference on Advances in Signal Processing (CASP), 2016, pp. 118-122, doi: 10.1109/CASP.2016.7746149.
    [10] S. Nikam and S. Deosarkar, “Fast ICA based technique for non-invasive fetal ECG extraction,” Conference on Advances in Signal Processing (CASP), 2016, pp. 60-65, doi: 10.1109/CASP.2016.7746138.
    [11] J. Pan and W. J. Tompkins, “A Real-Time QRS Detection Algorithm,” IEEE Transactions on Biomedical Engineering, vol. BME-32, no. 3, pp. 230-236, March 1985, doi: 10.1109/TBME.1985.325532.
    [12] K. F. Tan, K. L. Chan and K. Choi, “Detection of the QRS complex, P wave and T wave in electrocardiogram,” First International Conference Advances in Medical Signal and Information Processing (IEE Conf. Publ. No. 476), 2000, pp. 41-47, doi: 10.1049/cp:20000315.
    [13] J. Wang, G. Yu, L. Zhong, W. Chen and Y. Sun, “Classification of EEG signal using convolutional neural networks,” 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2019, pp. 1694-1698, doi: 10.1109/ICIEA.2019.8834381.
    [14] P. Nagabushanam, S. T. George, P. Davu, P. Bincy, M. Naidu and S. Radha, “Artifact Removal using Elliptic Filter and Classification using 1D-CNN for EEG signals,” 6th International Conference on Advanced Computing and Communication Systems (ICACCS), 2020, pp. 551-556.
    [15] Y. -H. Chen, T. -J. Yang, J. Emer and V. Sze, “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp. 292-308, June 2019, doi: 10.1109/JETCAS.2019.2910232.
    [16] S. -Y. Lee, Y. -W. Hung, Y. -T. Chang, C. -C. Lin and G. -S. Shieh, “RISC-V CNN Coprocessor for Real-Time Epilepsy Detection in Wearable Application,” IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 4, pp. 679-691, Aug. 2021, doi: 10.1109/TBCAS.2021.3092744.
    [17] M. Chourasia, A. Thakur, S. Gupta and A. Singh, “ECG Heartbeat Classification Using CNN,” IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 2020, pp. 1-6, doi: 10.1109/UPCON50219.2020.9376451.
    [18] A. M. TURING, “I.—COMPUTING MACHINERY AND INTELLIGENCE,” Mind, Volume LIX, Issue 236, October 1950, Pages 433–460.
    [19] Mitchell, Tom M., and Tom M. Mitchell. (1997) Machine learning. Vol. 1. No. 9. New York: McGraw-hill.
    [20] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735-1780, 15 Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
    [21] Kaelbling, Leslie Pack, Michael L. Littman, and Andrew W. Moore, “Reinforcement learning: A survey,” Journal of artificial intelligence research, 1996, 4: 237-285.
    [22] SILVER, David, et al., “Mastering the game of Go with deep neural networks and tree search,” Nature, 2016, 529.7587: 484-489.
    [23] Xuechao Wei et al., “Automated systolic array architecture synthesis for high throughput CNN inference on FPGAs,” 54th ACM/EDAC/IEEE Design Automation Conference (DAC), 2017, pp. 1-6, doi: 10.1145/3061639.3062207.
    [24] J. J. Zhang, T. Gu, K. Basu and S. Garg, “Analyzing and mitigating the impact of permanent faults on a systolic array based neural network accelerator,” IEEE 36th VLSI Test Symposium (VTS), 2018, pp. 1-6, doi: 10.1109/VTS.2018.8368656.
    [25] 廖又以, 以硬體實現分析心電圖之類神經網路, 國立成功大學電機工程學系碩士論文, 2019.
    [26] 鍾台湘, 可應用於心律不整分類之人工智慧硬體加速器設計與實現, 國立成功大學電機工程學系碩士論文, 2022.
    [27] T. J. Jun, H. J. Park, N. H. Minh, D. Kim and Y. -H. Kim, “Premature Ventricular Contraction Beat Detection with Deep Neural Networks,” 15th IEEE International Conference on Machine Learning and Applications (ICMLA), 2016, pp. 859-864, doi: 10.1109/ICMLA.2016.0154.
    [28] T. Ince, S. Kiranyaz, and M. Gabbouj, “A generic and robust system for automated patient-specific classification of ECG signals,” IEEE Trans. Biomed. Eng., vol. 56, no. 5, pp. 1415–1426, May 2009.
    [29] C. Ye, B. V. K. V. Kumar, and M. T. Coimbra, “Heartbeat classification using morphological and dynamic features of ECG signals,” IEEE Trans. Biomed. Eng., vol. 59, no. 10, pp. 2930–2941, Oct. 2012.
    [30] U. Rajendra Acharya, Hamido Fujita, Shu Lih Oh, Yuki Hagiwara, Jen Hong Tan, Muhammad Adam, “Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals,” Information Sciences, Volumes 415–416, 2017, Pages 190-198.
    [31] GHONGADE, Rajesh, et al., “A brief performance evaluation of ECG feature extraction techniques for artificial neural network based classification,” TENCON 2007 - 2007 IEEE Region 10 Conference, 2007, pp. 1-4, doi: 10.1109/TENCON.2007.4429096.
    [32] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” 2015. [Online]. Available: arxiv.org/abs/1503.02531.
    [33] 張耀澤, 一個應用於穿戴裝置即時癲癇檢測與辨識之高效能可編程的RISC-V指令集卷積類神經網路協同處理器, 國立成功大學電機工程學系碩士論文, 2020.
    [34] P. N. Whatmough, S. K. Lee, D. Brooks and G. -Y. Wei, “DNN Engine: A 28-nm Timing-Error Tolerant Sparse Deep Neural Network Processor for IoT Applications,” IEEE Journal of Solid-State Circuits, vol. 53, no. 9, pp. 2722-2731, Sept. 2018, doi: 10.1109/JSSC.2018.2841824.
    [35] “MATLAB Fixed-Point Concepts and Terminology.” Accessed: Jun. 17, 2022 [Online].Available:https://www.mathworks.com/help/dsp/ug/concepts-and-terminology.html
    [36] Wayne Wolf. (2004). FPGA-Based System. Pearson Education.
    [37] Philip de Chazal, M. O'Dwyer and R. B. Reilly, “Automatic classification of heartbeats using ECG morphology and heartbeat interval features,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 7, pp. 1196-1206, July 2004, doi: 10.1109/TBME.2004.827359.
    [38] S. S. Xu, M. -W. Mak and C. -C. Cheung, “Towards End-to-End ECG Classification With Raw Signal Extraction and Deep Neural Networks,” IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 4, pp. 1574-1584, July 2019, doi: 10.1109/JBHI.2018.2871510.
    [39] Y. -H. Chen, T. Krishna, J. S. Emer and V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127-138, Jan. 2017, doi: 10.1109/JSSC.2016.2616357.
    [40] S. Bianco, R. Cadene, L. Celona and P. Napoletano, “Benchmark Analysis of Representative Deep Neural Network Architectures,” IEEE Access, vol. 6, pp. 64270-64277, 2018, doi: 10.1109/ACCESS.2018.2877890.
    [41] R. Avanzato and F. Beritelli, “Automatic ECG diagnosis using convolutional neural network,” Electronics, vol. 9, no. 6, p. 951, 2020.
    [42] Y. Liu, L. Dong, B. Zhang, Y. Xin, and L. Geng, “Real Time ECG Classification System Based on DWT and SVM,” IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 2020: IEEE, pp. 155-156.
    [43] V. Tsoutsouras, K. Koliogeorgi, S. Xydis, and D. Soudris, “An exploration framework for efficient high-level synthesis of support vector machines: Case study on ECG arrhythmia detection for Xilinx Zynq SoC,” J Sign Process Syst, vol. 88, pp. 127-147, 2017.
    [44] C. Chen et al., “An atrial fibrillation detection system based on machine learning algorithm with mix-domain features and hardware acceleration,” 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1423-1426, 2021.
    [45] Ullah, Amin, Sadaqat ur Rehman, Shanshan Tu, Raja Majid Mehmood, Fawad, and Muhammad Ehatisham-ul-haq, “A Hybrid Deep CNN Model for Abnormal Arrhythmia Detection Based on Cardiac ECG Signal,” Sensors, vol. 21, no. 3, p. 951, 2021.
    [46] Russell D. Reed et al. (1999). Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks. The MIT Press.
    [47] Smith, Leslie N. and Nicholay Topin. "Deep convolutional neural network design patterns." arXiv preprint arXiv:1611.00847 (2016).
    [48] T. Yingthawornsuk, “Classification of ECG Signals Using Modified Hjorth Descriptors,” 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Las Palmas de Gran Canaria, Spain, pp. 345-350, 2018.
    [49] J. Lu, D. Liu, X. Cheng, L. Wei, A. Hu and X. Zou, “An Efficient Unstructured Sparse Convolutional Neural Network Accelerator for Wearable ECG Classification Device,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 11, pp. 4572-4582, Nov. 2022, doi: 10.1109/TCSI.2022.3194636.
    [50] J. Lu et al., “Efficient Hardware Architecture of Convolutional Neural Network for ECG Classification in Wearable Healthcare Device,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 7, pp. 2976-2985, July 2021, doi: 10.1109/TCSI.2021.3072622.
    [51] Q. Xie, S. Tu, G. Wang, Y. Lian and L. Xu, “Feature Enrichment Based Convolutional Neural Network for Heartbeat Classification From Electrocardiogram,” IEEE Access, vol. 7, pp. 153751-153760, 2019, doi: 10.1109/ACCESS.2019.2948857.
    [52] X. Zhai and C. Tin, “Automated ECG Classification Using Dual Heartbeat Coupling Based on Convolutional Neural Network,” IEEE Access, vol. 6, pp. 27465-27472, 2018, doi: 10.1109/ACCESS.2018.2833841.
    [53] L. Meng, K. Ge, Y. Song, D. Yang and Z. Lin, “Long-term Wearable Electrocardiogram Signal Monitoring and Analysis Based on Convolutional Neural Network,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-11, 2021, Art no. 2507711, doi: 10.1109/TIM.2021.3072144.
    [54] N. Sabor, G. Gendy, H. Mohammed, G. Wang and Y. Lian, “Robust Arrhythmia Classification Based on QRS Detection and a Compact 1D-CNN for Wearable ECG Devices,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 12, pp. 5918-5929, Dec. 2022, doi: 10.1109/JBHI.2022.3207456.
    [55] “PYNQ.” Accessed: Dec. 31, 2022. [Online]. Available: http://www.pynq.io/board.html

    無法下載圖示 校內:2028-04-12公開
    校外:2028-04-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE