簡易檢索 / 詳目顯示

研究生: 鹿耘嘉
Lu, Yun-Jia
論文名稱: IGBT串聯開關技術實現
Implementation of IGBTs Series Switching Technology
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 87
中文關鍵詞: 高壓脈衝串聯開關驅動設計串聯同步技術脈衝變壓器
外文關鍵詞: High-Voltage pulse, Series switching driver design, Series synchronous technique, Pulse transformer
相關次數: 點閱:131下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著環境污染日漸嚴重,高壓脈衝技術在環境治理、穀物殺菌、除塵消毒等民生應用蓬勃發展。然而在高壓脈衝技術中,切換脈衝的開關非常重要。當高壓脈衝電路需要高頻快速切換時,傳統斷路器開關雖可承受較高電壓與電流,但無法達到高頻要求;半導體開關雖可實現高頻快速切換,然而單顆半導體元件的耐壓與耐流卻無法做到很大。因此單顆半導體元件若能採取串聯技術則可達到耐壓的要求。串聯技術的關鍵,是在確保其開關狀態改變的瞬間與其進入穩定工作狀態後,每顆開關上的電壓均能合理分布,避免單一元件上出現過電壓現象而導致元件損毀。
    本文設計一IGBT串聯開關驅動電路,由四組IGBT串聯所組成,每組IGBT耐壓為600 V,輸入電壓為2000 V,切換頻率為50 kHz,使四組IGBT達到同步導通與關斷,並以實驗結果驗證本文之理論分析。

    As the environmental contamination getting worse, high-voltage pulse technology develops rapidly in environmental governance, cereals sterilization, dust disinfection and other livelihood applications. However, in the high-voltage pulse technique, switching element is very important. When a high switching frequency is required in high-voltage pulse circuit, conventional circuit breaker is not suitable because it cannot operate in high frequency even if it can withstand a high voltage and current. On the other hand, semiconductor switch can achieve high switching frequency but the maximum voltage and current rating are very low and difficult to be used in high-voltage pulse application. Thus, by applying the cascading technique to the semiconductor switches can meet the requirement of high withstand voltage. The crucial issue in series the semiconductor switches is to ensure that during the transitional state when the switches are turned-on and turned-off, the voltage across each switch are merely same in order to avoid overvoltage that will cause damage to the switches.
    The proposed driver circuit in this thesis is designed for a four series connected IGBT which can withstand 600 V each, input voltage of 2000 V and switching frequency of 50 kHz. The proposed driver circuit is implemented to synchronize the IGBT to turned on and turned off at the same time. Finally, an experiment is implemented to verify the theoretical analyses of this thesis.

    目 錄 中 文 摘 要 I Abstract II 誌 謝 II 目 錄 III 圖 目 錄 VI 表 目 錄 X 第一章 緒論 1 1.1研究動機與背景 1 1.2研究目的與內容 3 1.3論文大綱 4 第二章 IGBT基本結構與特性 6 2.1IGBT基本結構與工作原理 7 2.1.1基本結構 7 2.1.2工作原理 9 2.2IGBT工作特性與相關參數 11 2.2.1IGBT的動作模式 11 2.2.2IGBT的重要參數 19 2.3IGBT巨觀模型之等效電路 22 2.3.1巨觀模型 22 2.3.2導通電阻 24 2.3.3電壓與電容之關係 25 2.3.4受控電流源及閘極漏電阻及輸出電阻 25 2.3.5二極體 26 第三章 IGBT串聯驅動電路設計 27 3.1IGBT串聯技術概論 27 3.2IGBT的VCE電壓平衡 28 3.2.1被動式緩衝電路 34 3.2.2主動式緩衝電路 35 3.3IGBT的VGE電壓同步 35 3.3.1閘極電壓控制 36 3.3.2閘極驅動訊號控制 37 3.3.3耦合變壓器控制 39 3.3.4串聯變壓器控制 40 3.4IGBT串聯設計 42 3.4.1驅動電路架構 42 3.4.2影響IGBT串聯同步之因素 48 3.4.3VCE的均壓平衡設計 59 3.4.4VGE的訊號同步設計 62 第四章 電路參數設計與實驗結果 64 4.1電路規格與參數設計 64 4.2實驗結果 68 第五章 結論與未來展望 80 5.1結論 80 5.2未來展望 81 參考文獻 82

    [1] 李東梨、曹丰文、張晉、何湘寧,脈衝功率技術在環境工程領域的應用,高電壓技術,民國九十一年。
    [2] 吳崗、鄭成、寧正祥,高壓脈衝電場滅菌機理,食品科學,民國八十七年。
    [3] R. E. Bruhn, P. D. Pedrow, and R. G. Olsen, “Electrical Environment Surrounding Microbes Exposed to Pulsed Electric Fields,” IEEE Trans. on Dielectrics and Electrical Insulation, vol. 4, no. 6, pp. 806-812, Dec. 1997.
    [4] C. Mermigkas, V. Timoshkin, J. MacGregor, J. Given, P. Wilson, and T. Wang, “Superposition of DC Voltage and Submicrosecond Impulses for Energization of Electrostatic Precipitators,” IEEE Trans. on Plasma Science, vol. 40, no. 10, pp. 2388-2394, Oct. 2012.
    [5] A. Mizuno and Y. Hori, “Destruction of Living Cells by Pulsed High-Voltage Application,” IEEE Trans. on Dielectrics and Electrical Insulation, vol. 24, no. 3, pp. 387-394, May 1988.
    [6] 郭政昌,高脈衝電場產生器研製與穀類殺菌應用,中正大學電機工程研究所碩士論文,民國九十三年。
    [7] X. Lan, M. Long, X. Zijie, X. Qin, Z. Deqing, and Y. Zijang, “A Novel Generator for High-Voltage Bipolar Square Pulses with Applications in Sterilization of Microorganism” IEEE Trans. on Dielectrics and Electrical Insulation, vol. 22, no. 4, pp. 1887-1895, August 2015.
    [8] 劉磊,IGBT串聯均壓技術的研究,南京航空航天大學碩士學位論文,民國九十八年。
    [9] 趙軍平,基於MOSFET的高重複頻率固體開關技術研究,中國工程物理研究院碩士論文,民國九十三年。
    [10] V. Zorngiebel, M. Hecquard, E. Spahn, A. Welleman, and S. Scharnholz, “Modular 50-kV IGBT Switch for Pulsed-Power Applications,” IEEE Trans. on Plasma Science, vol. 39, no. 1, pp. 364-367, January 2011.
    [11] A. Kluge, H. Gueldner, T. Trompa, and D. Mory, “IGBT-based Switching Modules for Laser Applications,” IEEE Trans. on Dielectrics and Electrical Insulation, vol. 22, no. 4, pp. 1954-1962, August 2015.
    [12] 張昌利,陳治明,高壓IGBT製造技術的最新動向,半導體情報,民國八十六年。
    [13] 王樹振,單威,宋玲玲,IGBT絕緣閘雙極晶體管發展簡述,微處理機,民國九十七年。
    [14] G. Busatto, C. Abbate, F. Iannuzzo, B. Abbate, L. Fratelli, B. Cascone, and R. Manzo. “High-Voltage, High-Performance Switch Using Series-Connected IGBTs,” IEEE Trans. on Power Electronics, vol. 25, no. 9, pp. 2450-2459, September 2010.
    [15] K. Sasagawa, Y. Abe, and K. Marsuse, “Voltage-Balancing Method for IGBTs Connected in Series,” IEEE Trans. on Industry Applications, vol. 40, no. 4, pp. 1025-1030, July 2004.
    [16] 陳浩,MOSFET和IGBT驅動對比的簡介,電源模組,民國一百年。
    [17] 張天錫,電力電子學,東華書局,民國八十四年。
    [18] 江炫樟,電力電子學,全華科技圖書股份有限公司,台北,民國八十二年。
    [19] 曹恆偉,林浩雄,微電子電路(上),台北圖書公司,民國八十一年。
    [20] EPARC,電力電子學綜論,全華圖書股份有限公司,台北,民國一百零二年。
    [21] V. K. Khanna, Insulated Gate Bipolar Transistor IGBT Theory and Design, IEEE Press, Wiley Interscience, 2003.
    [22] 廖聰明,電力電子技術一,經濟部工業局,民國九十三年。
    [23] J. T. Humphries and L. P. Sheets, Industrial Electronics, Fourth Edition, Delmar Publishers Inc., 1993.
    [24] “Advanced IGBT/MOSFET Driver TD350,” STMicroelectronics Group of Companies, 2004.
    [25] 梁從主,電力電子與電源轉換器設計講義,國立成功大學,民國九十九年七月。
    [26] 王兆安,黃俊,電力電子技術,機械工業出版社,民國八十九年。
    [27] B. Nick, S. Munk-Nielsen, F. Iannuzzo, and M. Liserre, “IGBT Junction Temperature Measurement via Peak Gate Current,” IEEE Trans. on Power Electronics, vol. 31, no. 5, pp. 3784-3793, May 2016.
    [28] 林俊男, “IGBT串並聯技術之研究” 國立成功大學電機工程研究所碩士論文,民國八十四年。
    [29] IKW30N60H3 Datasheet, Infineon Technologies, Inc., 2010.
    [30] H. Soonwook and Y. G. Lee, “Active Gate Control Strategy of Series Connected IGBTs for High Power PWM Inverter,” IEEE Power Electronics and Drive Systems, vol. 2, no. 5, pp. 646-652, July 1999.
    [31] R. Giri, R. Ayyanar, and N. Mohan, “Common-Duty-Ratio Control of Input-Series Connected Modular DC-DC Converters with Active Input Voltage and Load-Current Sharing,” IEEE Trans. on Industry Applications, vol. 42, no. 4, pp. 1101-1111, July 2006.
    [32] J. W. Kim, J. S. You, and B. H. Cho, “Input series-output parallel connected converter for high voltage power conversion applications employing charge control,” IEEE Trans. on Industrial Electronics, vol. 48, no. 3, pp. 536-544, June 2001.
    [33] C. Venkatesh, H. Soonwook, and A. David, “Series Connection of IGBTs with Active Voltage Balanceing,” IEEE Trans. on Industry Applications, vol. 35, no. 4, pp. 917-923, July 1999.
    [34] V. Esteve, E. Sanchis-Kilders, J. Jordan, E. J. Dede, C. Cases, E. Maset, J. B. Ejea, and A. Ferreres, “Improving the Efficiency of IGBT Series-Resonant Inverters Using Pulse Density Modulation,” IEEE Trans. on Industrial Electronics, vol. 58, no. 3, pp. 979-987, March 2011.
    [35] P. Ranstad and N. Hans-Peter, “On Dynamic Effects Influencing IGBT Losses in Soft-Switching Converters,” IEEE Trans. on Power Electronics, vol. 26, no. 1, pp. 260-271, January 2011.
    [36] 梁適安,高頻交換式電源供應器原理與設計,全華科技圖書股份有限公司,民國八十四年。
    [37] 吳加林,一種IGBT串聯直接的高壓橋臂,實用新型專利,00223733.4,民國九十年。
    [38] D. M. Divan and G. Skibinski, “Zero-Switching-Loss Inverter for High-Power Applications,” IEEE Trans. on Industry Applications, vol. 25, no. 4, pp. 634-643, July 1989.
    [39] C. Licitra, S. Musumeci, and R. Letor, “A New Driving Circuit for IGBT Devices,” IEEE Trans. on Power Electronics, vol. 10, no. 3, pp. 373-378, May 1995.
    [40] J. F. Chen, J. N. Lin, and T. H. Ai, “The Techniques of the Seral and Paralleled IGBTs,” IEEE Trans. on Industry Applications, vol. 2, no. 4, pp. 999-1004, July 1996.
    [41] P. R. Palmer and A. N. Githiari, “The Series Connection of IGBTs with Active Voltage Sharing,” IEEE Trans. on Power Electronics, vol. 12, no. 4, pp. 637-644, July 1997.
    [42] J. Sigg and P. Turkes, “The Series Connection of IGBTs Investigated by Experiments and Simulation,” IEEE Trans. on Power Electronics, vol. 2, no. 4, pp. 1760-1765, July 1996.
    [43] F. Frisina, M. Melito, and S. Musumeci, “Short Circuit Transient Behavior of IGBT Devices in Series Connections,” IEEE Trans. on Power Electronics, vol. 3, no. 4, pp. 878-883, July 2002.
    [44] A. Raciti, G. Belverde, A. Galluzzo, G. Greco, and M. Melito, “Control of the Switching Transients of IGBT Series Strings by High-Performance Drive Units,” IEEE Trans. on Industrial Electronics, vol. 48, no. 4, pp. 482-490, June 2001.
    [45] A. Consoli, S. Musumeci, G. Oriti, and A. Testa, “Active Voltage Balancement of Series Connected IGBTs,” IEEE Trans. on Industrial Electronics, vol. 3, no. 4, pp. 2752-2758, June 1995.
    [46] J. W. Baek, D. W. Yoo, and H. G. Kim, “High-Voltage Seitch Using Series-Connected IGBTs with Simple Auxiliary Circuit,” IEEE Trans. on Industry Applications, vol. 37, no. 6, pp. 1832-1839, Dec. 2001.
    [47] M. Bruckmann, M. Fasching, J. Sigg, and R. Sommer, “Series Connection of High Voltage IGBT Modules,” IEEE Trans. on Industry Applications, vol. 2, no. 4, pp. 1067-1072, June 1998.
    [48] C. Gerster, “Fast High-Power/High-Voltage Switch Using Series-Connected IGBTs with Active Gate-Controlled Voltage-Balancing,” IEEE Trans. on Power Electronics, vol. 1, no. 4, pp. 469-472, July 1994.
    [49] C. Gerster, P.Hofer, and N. Karter, “Gate-Control Strategies for Snubberless Operation of Series Connected IGBTs,” IEEE Trans. on Power Electronics, vol. 2, no. 4, pp. 1739-1742, July 1996.

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE