簡易檢索 / 詳目顯示

研究生: 賴昱豪
Lai, Yu-Hao
論文名稱: 復健上肢外骨骼之順應控制器研究
Study on Admittance Controller for Rehabilitation Upper-Limb Exoskeleton System
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 120
中文關鍵詞: 上肢外骨骼導納控制交互作用外力矩估測法虛擬通道復健訓練
外文關鍵詞: Upper-Limb Exoskeleton, Admittance Control, Virtual Tunnel, Interacted External Torque Estimation, Rehabilitation Training
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技進步,越來越多研究投入到外骨骼領域以協助人類達到特定任務為目標,而著個人健康意識的上升,又以復健訓練為主要研究方向。在外骨骼與使用者的互動之中,兩者之間的交互作用力可視為最重要的訊息之一,此訊息不僅可做為控制策略的依據,亦是影響使用者舒適程度的指標。在本論文中將交互作用力視為估測外力矩值,透過兩種交互作用力矩估測演算法結合導納控制器,讓上肢外骨骼可順應使用者的動作進行復健訓練及增加使用者操作安全性。在常見的順應控制器中,通常將各軸馬達的虛擬質量、彈簧、阻尼等元件之參數值設為固定值。本論文提出一虛擬通道的方法,透過即時調整虛擬被動元件參數值,讓使用者可依據個人自主運動能力於通道內進行不同的復健訓練任務。另外進行兩種速度估測法的比較,優化外力矩估測演算法以及提升使用者的舒適性。最後,本論文於使用上肢外骨骼實驗平台進行數項實驗以驗證上述方法的有效性,並提出一性能指標,以判斷復健訓練對使用者而言為助力復健抑或是阻力訓練。

    With technological advancements, increasing research is being invested in the field of exoskeletons to assist humans in specific tasks. As personal health awareness rises, the focus aiming at rehabilitation training. The interaction forces between the exoskeleton and the user are crucial, serving as the basis for control strategies and an indicator of user comfort. This paper estimates interaction torque through two estimation algorithms combined with an admittance controller, allowing the exoskeleton to adapt to user movements for safe rehabilitation.
    In common compliant controllers, parameters such as virtual mass, spring, and damping for each motor axis are fixed. This paper proposes a virtual tunnel method to adjust these parameters in real-time, enabling users to perform various rehabilitation tasks based on their abilities. Additionally, the study compares two velocity estimation methods to optimize torque estimation algorithms and enhance user comfort. The effectiveness of these methods is validated using an upper limb exoskeleton experimental platform, and a performance indicator is proposed to determine whether the rehabilitation training aids or resists the user.

    中文摘要 I EXTENDED ABSTRACT II 誌謝 XVI 目錄 XVIII 表目錄 XXI 圖目錄 XXII 第一章 緒論 1 1.1研究動機與目的 1 1.2文獻回顧 2 1.3論文貢獻與架構 4 第二章 上肢外骨骼機構運動學及動態模型 6 2.1上肢外骨骼簡介 6 2.1.1 康復訓練型外骨骼 6 2.1.2 增強型外骨骼 7 2.2 系統動態模型 8 2.2.1 上肢外骨骼數學模型 8 2.3 順、逆向運動學模型 13 2.3.1 順向運動學 13 2.3.2 逆向運動學 14 2.4 系統動態模型參數鑑別 16 2.5 賈可比矩陣 20 2.5.1 速度空間轉換 20 2.5.2 外力矩空間轉換 20 第三章 速度估測法與外部交互作用力矩估測法 22 3.1 速度估測法簡介 22 3.1.1 最小平方速度估測法 22 3.1.2 卡爾曼濾波器速度估測法 25 3.2 外力估測法簡介 27 3.3 基於廣義動量之外力矩估測法 28 3.4改良型基於廣義動量之外力矩估測法 30 第四章 順應控制 31 4.1順應控制簡介 31 4.2 間接性力量控制 33 4.2.1 基於位置之阻抗控制 33 4.2.2 基於力量之阻抗控制 35 4.2.3 阻抗控制與導納控制比較 37 4.3 虛擬通道 38 4.4 控制系統總架構 40 第五章 實驗與結果分析 42 5.1實驗環境架構與設備介紹 42 5.1.1 人體上肢外骨骼機構硬體介紹 43 5.1.2 軟體介紹 49 5.1.3 實驗環境架構 50 5.2 實驗一、系統參數鑑別 51 5.3 實驗二、外力矩估測法實驗 55 5.4 實驗三、速度估測法實驗 62 5.5 實驗四、上肢外骨骼復健訓練實驗 65 第六章 結論與未來展望 85 6.1結論 85 6.2 未來展望與建議 86 Reference 87

    [1] A. B. Zoss, H. Kazerooni, and A. Chu, "Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)," IEEE/ASME Transactions on Mechatronics, vol. 11, no. 2, pp. 128–138, April 2006.
    [2] S. Kim, M. A. Nussbaum, M. I. Mokhlespour Esfahani, M. M. Alemi, B. Jia, and E. Rashedi, "Assessing the Influence of a Passive, Upper Extremity Exoskeletal vest for Tasks Requiring Arm Elevation: Part II – ‘Unexpected’ effects on shoulder motion, balance, and spine loading," Applied Ergonomics, vol. 70, pp. 323–330, July 2018.
    [3] A. C. de Oliveira et al., "Abstract TP184: Upper-body Exoskeleton Assisted Stroke Rehabilitation Therapy in Complex Multi-joint Movements," Stroke, vol. 50, no. Suppl_1, pp. ATP184–ATP184.
    [4] D.S. Kim, H.J. Lee, S.H. Lee, "A Wearable Hip-Assist Robot Reduces the Cardiopulmonary Metabolic Energy Expenditure During Stair Ascent in Elderly Adults: a pilot cross-sectional study," BMC Geriatr, vol. 18, no. 1, p. 230, Sep 2018.
    [5] Jocelyn。「機器人革命」台灣首間智慧型醫療外骨骼機器人研發商!福寶科技致力為患者恢復行動力。檢索日期2024年6月22日,取自https://www.inside.com.tw/feature/robotics/30159-free-bionics-medical-robots-interview
    [6] 郭宏章。「2024國防預算」國軍持續研發「鋼鐵人」 外骨骼動力服2.0版全身型可扛50公斤。檢索日期2024年6月24日,取自https://www.taisounds.com/news/content/71/78353
    [7] M. F. A. Jalal, H. H. Harith, W. Z. W. Hasan, M. S. F. Salim, and T.-T. Lin, "Exoskeletons for Elderly Activity of Daily Living Assistance: A Review of Upper Limb Exoskeletons and Assessments," International Journal of Integrated Engineering, vol. 16, no. 1, Art. no. 1, 2024.
    [8] K. Huysamen, T. Bosch, M. de Looze, K. S. Stadler, E. Graf, and L. W. O’Sullivan, "Evaluation of a Passive Exoskeleton for Static Upper Limb Activities," Applied Ergonomics, vol. 70, pp. 148–155, 2018.
    [9] R. Altenburger, D. Scherly, and K. S. Stadler, "Design of a passive, iso-elastic upper limb exoskeleton for gravity compensation," Robomech J, vol. 3, no. 1, p. 12, 2016.
    [10] K. Anam and A. A. Al-Jumaily, "Active Exoskeleton Control Systems: State of the Art," Procedia Engineering, vol. 41, pp. 988–994, 2012.
    [11] A. Gupta, A. K. Mondal, and M. Gupta, "Kinematic, Dynamic Analysis and Control of 3 DOF Upper-limb Robotic Exoskeleton," Journal Européen des Systèmes Automatisés, vol. 52, pp. 297–304, 2019.
    [12] A. Blanco-Ortega , L. Vázquez-Sánchez ,M. Adam-Medina ,J. Colín-Ocampo ,A. Abúndez-Pliego ,C. Cortés-García ,CD. García-Beltrán , "A Robust Controller for Upper Limb Rehabilitation Exoskeleton," Applied Sciences, vol. 12, no. 3, Art. no. 3, 2022.
    [13] J. Sun, Y. Shen, and J. Rosen, "Sensor Reduction, Estimation, and Control of an Upper-Limb Exoskeleton," IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1012–1019, April 2021.
    [14] E. Trigili , L. Grazi ,S. Crea ,A. Accogli, J. Carpaneto, S. Micera... &A. Panarese, "Detection of Movement Onset using EMG Signals for Upper-Limb Exoskeletons in Reaching Tasks," Journal of NeuroEngineering Rehabilitation, vol. 16, no. 1, p. 45, 2019.
    [15] L. Rinaldi, L.-F. Yeung, P. C.-H. Lam, M. Y. C. Pang, R. K.-Y. Tong, and V. C. K. Cheung, "Adapting to the Mechanical Properties and Active Force of an Exoskeleton by Altering Muscle Synergies in Chronic Stroke Survivors," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 10, pp. 2203–2213, Oct 2020.
    [16] Z. Li, CY. Su, L. Wang, Z. Chen, T. Chai, "Nonlinear Disturbances Observer-Based Control Design for a Robotic Exoskeleton Incorporating Fuzzy Approximation," IEEE Transactions on Industrial Electronics, vol. 62, no. 9, pp. 5763-5775, June 2015.
    [17] M. Khamar and M. Edrisi, "Designing a Backstepping Sliding Mode Controller for an Assistant Human Knee Exoskeleton Based on Nonlinear Disturbance Observer,” Mechatronics, vol. 54, pp. 121–132, 2018.
    [18] A. De Luca, A. Albu-Schaffer, S. Haddadin,G. Hirzinger, "Collision Detection and Safe Reaction with the DLR-III Lightweight Manipulator Arm" in Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 1623-1630, 2006.
    [19] Z. Cong, A. Honglei, C. Wu, L. Lang, Q. Wei, M. Hongxu, "Contact Force Estimation Method of Legged-Robot and Its Application in Impedance Control" IEEE Access, vol. 8, pp. 161175-161187, Sep 2020.
    [20] R. Schiavi, A. Bicchi, and F. Flacco, "Integration of Active and Passive Compliance Control for Safe Human-Robot Coexistence," in Proceeding of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 259–264, 2009.
    [21] A. Calanca, R. Muradore, and P. Fiorini, "A Review of Algorithms for Compliant Control of Stiff and Fixed-Compliance Robots,"IEEE/ASME Transactions on Mechatronics, vol. 21, no. 2, pp. 613–624, Aug, 2016.
    [22] Z. Li, Z. Huang, W. He, and C.-Y. Su, "Adaptive Impedance Control for an Upper Limb Robotic Exoskeleton Using Biological Signals," IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1664–1674, 2017.
    [23] C. Ochoa Luna, M. Habibur Rahman, M. Saad, P. S. Archambault, and S. Bruce Ferrer, "Admittance-Based Upper Limb Robotic Active and Active-Assistive Movements," International Journal of Advanced Robotic Systems, vol. 12, no. 9, p. 117, 2015.
    [24] C. Liang and T. Hsiao, "Walking Strategies and Performance Evaluation for Human-Exoskeleton Systems under Admittance Control," Sensors, vol. 20, no. 15, Art. no. 15, 2020.
    [25] F. Augugliaro, R. D'Andrea, "Admittance Control for Physical Human-Quadrocopter Interaction" in Proceeding of the IEEE 2013 European Control Conference, Zurich, Switzerland, pp. 1805-1810, 2013.
    [26] Y. Tu, A. Zhu, J. Song, H. Shen, Z. Shen, X. Zhang, G. Cao, "An Adaptive Sliding Mode Variable Admittance Control Method for Lower Limb Rehabilitation Exoskeleton Robot," Applied Sciences, vol. 10, no. 7, Art. no. 7, 2020.
    [27] A. Duschau-Wicke, J. von Zitzewitz, A. Caprez, L. Lunenburger, and R. Riener, "Path Control: A Method for Patient-Cooperative Robot-Aided Gait Rehabilitation," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 1, pp. 38–48, Oct, 2010.
    [28] F. Zhu, M. Kern, E. Fowkes, T. Afzal, J.L. Contreras-Vidal, G.E. Francisco, S.H. Chang, “Effects of an Exoskeleton-Assisted Gait Training on Post-Stroke Lower-Limb Muscle Coordination,” Journal of Neural Engineering., vol. 18, no. 4, p. 046039, 2021.
    [29] M. A. Gull, S. Bai, and T. Bak, "A Review on Design of Upper Limb Exoskeletons," Robotics, vol. 9, no. 1, Art. no. 1, 2020.
    [30] W. Khalil and J.-F. Kleinfinger, "Minimum Operations and Minimum Parameters of the Dynamic Models of Tree Structure Robots," IEEE Journal on Robotics and Automation, vol. 3, no. 6, pp. 517–526, Dec, 1987.
    [31] KJ. Park, "Fourier-Based Optimal Excitation Trajectories for the Dynamic Identification of Robots," Robotica , vol. 24, no. 5, pp. 625-633, 2006.
    [32] J. Swevers, C. Ganseman, D. B. Tukel, J. de Schutter, and H. Van Brussel, "Optimal Robot Excitation and Identification," IEEE Transactions on Robotics and Automation, vol. 13, no. 5, pp. 730–740, Oct, 1997.
    [33] B. Armstrong-Hélouvry, P. Dupont, and C. C. De Wit, "A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction,” Automatica, vol. 30, no. 7, pp. 1083–1138, 1994.
    [34] J. Swevers, C. Ganseman, J. De Schutter, and H. Van Brussel, "Experimental Robot Identification using Optimised Periodic Trajectories," Mechanical Systems and Signal Processing, vol. 10, no. 5, pp. 561–577, 1996.
    [35] J. Swevers, W. Verdonck, and J. De Schutter, "Dynamic Model Identification for Industrial Robots," IEEE Control Systems Magazine, vol. 27, no. 5, pp. 58–71, Oct, 2007.
    [36] H. A. L. Kiers, "Weighted Least Squares Fitting using Ordinary Least Squares Algorithms,” Psychometrika, vol. 62, no. 2, pp. 251–266, 1997.
    [37] RH. Brown, SC. Schneider, MG. Mulligan, "Analysis of Algorithms for Velocity Estimation from Discrete Position Versus Time Data" IEEE Transactions on Industrial Electronics, vol. 39, no. 1, pp. 11-19, Feb, 1992.
    [38] G. Welch and G. Bishop, "An Introduction to the Kalman Filter" Proc of SIGGRAPH, Course. 8, pp. 27599-23175, 2001.
    [39] A. De. Luca, R. Mattone, "Sensorless Robot Collision Detection and Hybrid Force/Motion Control" in Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 999-1004, 2005.
    [40] L. D. L. da Silva, T. F. Pereira, V. R. Q. Leithardt, L. O. Seman, C. A. Zeferino, "Hybrid Impedance-Admittance Control for Upper Limb Exoskeleton using Electromyography," Applied Sciences, vol. 10, no. 20: 7146, 2020.
    [41] D. E. Whitney, "Historical Perspective and State of the Art in Robot Force Control," The International Journal of Robotics Research, vol. 6, no. 1, pp. 3-14, 1987.
    [42] N. Hogan, "Impedance Control: An Approach to Manipulation: Part II—Implementation," Journal of Dynamic Systems, Measurement, and Control, vol. 107, no. 1, pp. 8–16, 1985.
    [43] Y. Guo, Y. Tian, H. Wang, and S. Han, "Adaptive Hybrid-Mode Assist-as-Needed Control of Upper Limb Exoskeleton for Rehabilitation Training," Mechatronics, vol. 100, p. 103188, 2024.
    [44] S. Plagenhoef, F. G. Evans, and T. Abdelnour, "Anatomical Data for Analyzing Human Motion," Research Quarterly for Exercise and Sport, vol. 54, no. 2, pp. 169–178, 1983.
    [45] P. de Leva, “Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters,” Journal of Biomechanics, vol. 29, no. 9, pp. 1223–1230, 1996.
    [46] 黃清揚,應用於人體下之耦合外骨骼系統之快速非奇異終端機分滑動模式可變阻抗順應控制器研究,碩士論文,國立成功大學電機工程學系,2022
    [47] 王俊翔,工業用機械手臂之混合順應控制研究,碩士論文,國立成功大學電機工程學系,2020。
    [48] 陳昭仁,基於觀測器之阻抗控制與被動式速度控制於手臂健身/復健裝置之應用,碩士論文,國立成功大學電機工程學系,2013。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE