簡易檢索 / 詳目顯示

研究生: 古世傑
Gu, Shih-Chieh
論文名稱: 具連續導通模式充電幫浦功因修正之改良米勒氏切換式磁阻馬達驅動器
Improved Miller SRM Driver with Continuous-Condition-Mode Charge-Pump Power Factor Correction
指導教授: 林瑞禮
Lin, Ray-Lee
陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 55
中文關鍵詞: 充電幫浦切換式磁阻馬達米勒氏
外文關鍵詞: Charge-Pump, PFC, Miller SRM
相關次數: 點閱:131下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出連續導通模式充電幫浦功因修正之改良米勒氏切換式磁阻馬達驅動器電路。當責任周期太大時,切換式磁阻馬達米勒驅動器會有線圈電流釋能慢的問題,而造成馬達產生負轉矩、增加功率損失以及效率低的問題。因此,本論文提出改良米勒氏切換式磁阻馬達驅動器可以解決切換式磁阻馬達米勒驅動器線圈電流釋能慢的問題,以減少負轉矩的產生和提升切換式磁阻馬達效率。
    由於改良米勒氏切換式磁阻馬達驅動器可以跟充電幫浦功因修正電路結合,使得改良米勒氏切換式磁阻馬達驅動器輸入電流各次諧波皆可符合國際IEC Class-D 1000-3-2 規範。最後本文將設計及完成一個具連續導通模式充電幫浦功因修正之改良米勒氏切換式磁阻馬達驅動器,在經由實驗數據驗證本論文所提出之電路可達高功因、磁阻馬達驅動器線圈電流快速釋能、高效率及輸入電流各次諧波皆可符合國際IEC 1000-3-2 Class-D 的規範。

    This paper presents a new improved Miller switched reluctance motor(SRM) driver with continuous- conduction-mode charge-pump power factor correction (CCM-CP-PFC). At high duty-cycle, the phase current of original Miller SRM driver discharges slowly, which causes large negative torque, high power losses and low electromechanical conversion efficiency. In order to solve this problem, this paper proposes a new improved Miller SRM driver using auxiliary inductor and capacitor achieves phase current to discharge quickly. Moreover, the input current harmonics of the improved Miller meet IEC 1000-3-2 Class-D standard by integrating CCM-CP-PFC with improved Miller SRM driver. Based on the derived analysis of the proposed CCM-CP-PFC
    improved Miller SRM driver, the design and the implementation of a prototype circuit is provided to demonstrate the performance of the proposed SRM driver.

    Chapter 1. Introduction 1 1.1.Background 1 1.2.Motivation 3 1.3.Outline of the thesis 7 Chapter 2. Improved Miller Driver for Switched-Reluctance Motors 8 2.1.Introduction 8 2.2.Operational Principle 10 2.3.Simplification of Auxiliary Circuit 15 2.4.Design Guidelines 16 2.5.Summary 21 Chapter 3. Continuous-Current-Mode Charge-Pump Power-Factor-Correction (CP-PFC) scheme 22 3.1.Introduction 22 3.2.Integration of CCM CP-PFC with Improved Miller Switched Reluctance Motor Driver 23 3.3.Operational Principle 27 3.4 Extend Circuit 33 3.5.Design Guidelines 34 3.6.Summary 36 Chapter 4. Implementation and Experimental Results 37 4.1.Introduction 37 4.2.Design and Implementation of Prototype Circuit 37 4.3.Experimental Results 40 4.4.Summary 50 Chapter 5. Conclusions and Future Works 51 References 53

    [1] T. J. E. Miller, switched reluctance motors drivers, Intertec Communications
    Inc., California, 1988
    [2] T. J. E. Miller, Brushless permanent-magnet and reluctance motor drives,
    “Oxford University Press, 1989.
    [3] P. J. Lawrenson et al., “Variable-speed switched reluctance motors,” IEE
    Proc.Vol.127 Pt. B, No.4, pp. 253-265, July 1980
    [4] M. R. Harris, J. W. Finch, J. A. Mallick and T. J. E. Miller, “A Review of the
    Integral-horsepower Switched Reluctance Motor Drive,” IEEE Transaction on
    Power Electronics, vol. IA-22, No. 4, pp. 716-721, July/August 1986
    [5] T. J. E. Miller and M. McGilp, “Nonlinear Theory of the switched Reluctance
    Motor for Rapid Computer-Aidead Design,” IEE Proceedings, vol. 137, pt. B,
    no. 6, Nov, pp. 337-347, 1990.
    [6] Hoang Le-Huy, Philippe Vlarouge, and Bruno Francoeur, “A Novel Unipolar
    Converter for Switched Reluctance Motor,” IEEE Transactions on Power
    Electronics, vol. 5, No. 4, October 1990.
    [7] R. Krishnan, Switched Reluctance Motor Drives Modeling, Simulation,
    Analysis, Design, and Applications, CRC Press, 2001.
    [8] T. J. E. Miller, “Switched Reluctance motors and Their Control,” Magna
    Physics Publishing and Oxford University Press, 1933.
    [9] T. J. E Miller, “Converter Volt-Ampere Requirements of the Switched
    Reluctance Motor Drive,” IEEE Transactions on Industry Applications, Vol.
    IA-21, No. 5, September/October 1985.
    [10] R. Krishnan, “Switched reluctance motor driver applications,” Electronic
    MOTORtechnics, Autumn, pp. 25-23, 1989.
    [11] Mehrada Ehsani, James T. bass, T. J. E. Miller and Robert L. Steigerwald,
    “Development of a Unipolar Converter for Variable Reluctance Motor Drives,”
    IEEE Transactions on Industry Applications, vol. IA-23, N0. 3, May/June
    1987.
    [12] Mike Barnes and Charles Pollock, “Power Electronic Converters for Switched
    Reluctance Drives,” IEEE Transactions on Power Electronics, vol. 13, no.6,
    November 1998.
    54
    [13] Slobodan Vukosavic and Victor R. Stefanovic, “SRM Inverter Topologies: A
    Comparative Evaluation,” IEEE Transactions on Industry Applications, vol. 27,
    No. 6, November/December 1991.
    [14] T. J. E. Miller, “Brushless Reluctance Motor Drives,” IEE Power Engineering
    Journal, vol. 1, pp. 325-331, November 1987
    [15] T. J. E. Miller, P. G. Bower, R. C. Becerra and M. Ehsani, “Four quadrant
    brushless reluctance motor drive,” IEE Conf, Power Electronics and
    Variable Speed Drives, pp. 273-276, July 1988
    [16] Sayeed Mir, Iqbal Husain and Makik E. Elbuluk, “Energy-Efficiency C-Dump
    Converters for Switched Reluctance Motors,” IEEE Transaction on Power
    Electronics, Vol, N0. 5, September 1997.
    [17] Shiyoung Lee, “Effects of Input Power Factor Correction on Variable Speed
    Drive Systems,” Ph.D. Dissertation, Virginia Tech, Sept. 1999.
    [18] Compliance Testing to the IEC 1000-3-2 (EN 61000-3-2) and IEC 1000-3-3
    (EN 61000-3-3) Standards, Application Note 1273, Hewlett Packard Co.,
    December 1995.
    [19] R. Krishnan and S. Lee, “Effect of power factor correction circuit on
    switched reluctance motor drives for appliances,” IEEE APEC conf., pp. 83-89,
    1994
    [20] Jurge Reient and Stefan Schroder, “power-factor correction for switched
    reluctance drives,” IEEE Trans. on industrial electronics, vol. 49, no. 1, pp.
    54-57, February 2002.
    [21] L. Caruso, A. Consoli, G. Scarcella and A. Testa, “ A switched reluctance
    motor driver operating at unity power factor,” IEEE Industry application
    conference, vol. 1, pp.410-417, 1996
    [22] Sang-Hun Lee, Feel-soon Kang, Sung-Jun Park, Su Eog Cho, Man Hyung Lee,
    “Single-stage power-factor-corrected converter for switched reluctance motor
    Drive,” Electric Power Systems Research 76 (2006) 534–540.
    [23] Jun Oyama, Tsuyoshi Higuchi, Takashi Abe and Takahiro Koga, “Efficiency
    and power-factor of novel hybrid type switched reluctance motor,” IEEE
    Industry application conference, vol. 1, 2002.
    [24] A. Consoli, A. Testa, N. Aiello, F. Gennaro, M/ Lo Presti, “Unipolar Converter
    for Switched Reluctance Motor Drives with Power Factor Improvement,” IEEE
    Applied Power Electronics Conference, pp. 1103-1108, 2001.
    [25] Jinrong Qian, “Advanced Single-Stage Power Factor Correction Techniques,”
    Ph.D. Dissertation, Virginia Tech, Sept. 1997.
    [26] Jinrong Qian, F. C. Lee, and T. Yamauchi, “Charge pump
    55
    power-factor-correction dimming electronic ballast,” IEEE Trans. On Power
    Electron, vol. 14, no. 3, pp. 461–468, May. 1999.
    [27] Jinrong Qian, Qun Zhao, Fred C. Lee, “Single-Stage Single-Switch
    Power-Factor-Correction AC/DC Converters with DC-Bus Voltage Feedback
    for Universal Line Applications,” IEEE Trans. on Power Electronics, vol. 13,
    no. 6, November 1998.
    [28] Jinrong Qian, F. C. Lee, and T. Yamauchi, “New continuous-input current
    charge pump power-factor-correction electronic ballast,” IEEE Trans. Power
    Electron, vol. 35, no. 2, pp. 433–441, Mar./Apr. 1999.
    [29] Jindong Zhang, “Advanced Integrated Single-Stage Power Factor Correction
    Techniques,” Ph.D. Dissertation, Virginia Tech, Mar. 2001.
    [30] Hung-Yi Liu, AC-Side CCM Charge Pump Power Factor Correction Electronic
    Ballasts,” Ms. Thesis, National Cheng Kung University, June 2005.
    [31] V. Vlatkovic, D. Borojevic, and F. C. Lee, “Input filter design for power factor
    correction circuit,” IEEE Trans. on Power Electronics, vol. 11, pp. 199-205,
    Jan. 1996

    下載圖示 校內:2009-09-13公開
    校外:2009-09-13公開
    QR CODE