簡易檢索 / 詳目顯示

研究生: 曾筱婷
Tseng, Hsiao-Ting
論文名稱: 溶膠凝膠法製備鑭鋯氧薄膜應用於電阻式記憶體之電阻轉換特性研究
Resistive Switching Characteristics of Sol-Gel Derived La2Zr2O7 Thin Film for RRAM Applications
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 128
中文關鍵詞: 鋯酸鑭薄膜溶膠凝膠法非晶態電阻式記憶體
外文關鍵詞: La2Zr2O7, Sol-gel, Amorphous, RRAM
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用溶膠凝膠法製備La2Zr2O7 (LZO)薄膜,並使用旋轉塗佈法將非晶態的LZO沉積於氧化銦錫(ITO)玻璃基板,研究金屬(Al或Ti)/LZO/ITO器件的雙極電阻轉換(BRS)行為。討論不同LZO薄膜厚度、不同頂部電極(Al、Ti)和不同薄膜退火溫度等條件對於電阻式記憶體(RRAM)的電阻轉換(RS)特性之影響。薄膜厚度隨著旋塗層數的增加而呈線性變化,薄膜厚度愈大會有愈高的工作電壓和更低的循環次數。另外,Ti/LZO(1L_As-dep.)/ITO比Al/LZO(1L_As-dep.)/ITO的RS特性較差,可能與頂部電極和底部電極之間的功函數差異有關。
      由實驗結果得知所有器件均表現出相似的主要漏電流傳導機制,在低電阻狀態(LRS)中的傳導機制主要為歐姆導通,而在高電阻狀態(HRS)中的傳導機制為缺陷控制之空間電荷限制電流(SCLC)所主導。此外,由於在薄膜退火製程後LZO薄膜中形成更多的氧空缺以及Al與LZO薄膜之間產生更厚的AlOx界面層,因此說明在薄膜退火熱處理之後可改善RS性能。Al/LZO(1L_A.T. 300℃)/ITO器件具有BRS特性,且循環次數為1971次以及超過104秒的高穩定記憶保留時間,並維持高低阻值比(Ron/Roff ratio)為101以便分辨高低阻態具有良好RS特性。

    Amorphous La2Zr2O7 (LZO) thin films were fabricated by using sol-gel method and the bipolar resistive switching (BRS) behavior in the Metal(Al or Ti)/LZO/ITO devices were investigated. The effect of LZO thin films thickness, different top electrode and various post annealing temperature condition on the RS properties were also discussed. The film thickness increases significantly as the number of spin-coating layers increases, bringing about higher operation voltage and worse switching cycle times. In addition, Ti/LZO(1L_As-dep.)/ITO device is worse on the RS properties than Al/LZO(1L_As-dep.)/ITO device about work function difference between top and bottom electrodes. All devices exhibited similar conduction mechanisms, which are described by the ohmic conduction in the low resistance state (LRS) and space-charge limited current (SCLC) in the high resistance state (HRS). Moreover, the RS performance can be improved by post annealing treatment due to the formation of more oxygen vacancies and thicker AlOx interface layer between Al and LZO thin film. The proposed RRAM illustrates BRS characteristics for 1971 cycle times and high stable retention times for over 104 s with a Ron/Roff ratio of around 101 at annealing temperature 300 ℃.

    摘要 I 致謝 XVI 目錄 XVIII 圖目錄 XX 表目錄 XXIII 第一章 緒論 1 1.1前言 1 1.2研究目的與動機 3 第二章 文獻回顧 5 2.1記憶體種類介紹 5 2.1.1揮發性記憶體 (Volatile Memory, VM) 6 2.1.2非揮發性記憶體 (Non-Volatile Memory, NVM) 10 2.2電阻式隨機存取記憶體 (RRAM) 20 2.2.1電阻轉換特性 21 2.3電阻轉換機制 25 2.3.1燈絲模型理論 (Filament model) 25 2.3.2界面導電機制 (Interface-type conducting path) 31 2.4漏電流傳導機制 33 2.4.1電極限制傳導機制 (Electrode-limited conduction mechanism) 34 2.4.2本體限制傳導機制 (Bulk-limited conduction mechanism) 38 2.5電阻式記憶體材料種類 46 2.5.1一元金屬氧化物 46 2.5.2鈣鈦礦(Perovskite)結構氧化物 51 2.5.3高分子材料 52 2.6 La2Zr2O7材料介紹 54 第三章 實驗流程與方法 55 3.1溶膠-凝膠法(Sol-Gel)介紹 55 3.1.1製備薄膜方式 57 3.1.2乾燥處理 59 3.1.3退火熱處理 59 3.2實驗流程 60 3.2.1實驗材料 60 3.2.2溶膠-凝膠配製 60 3.2.3 ITO玻璃基板清洗 61 3.2.4 LZO薄膜塗佈 61 3.2.5薄膜退火處理 61 3.3實驗設備 63 3.3.1電磁加熱攪拌器 63 3.3.2旋轉塗佈機 63 3.3.3爐管 63 3.3.4電子束蒸鍍機 64 3.4分析儀器 65 3.4.1熱分析 65 3.4.2低掠角薄膜X光繞射儀 (Thin Film X-ray Diffractometer, XRD) 66 3.4.3高解析掃描式電子顯微鏡 (High Resolution Scanning Electron Microscope, HR-SEM) 68 3.4.4多功能原子力顯微鏡 (Atomic Force Microscope, AFM) 69 3.4.5 X光光電子能譜儀 (X-ray Photoelectron Spectroscope, XPS) 70 3.4.6紫外光-可見光分光光譜儀 (Ultraviolet-Visible Spectrophotometer, UV-VIS) 71 3.4.7高解析穿透電子顯微鏡 (Ultrahigh Resolution Transmission Electron Microscope, HR-TEM) 71 3.4.8半導體參數分析儀 (Semiconductor parameter analyzer) 72 第四章 結果與討論 74 4.1 La2Zr2O7材料分析 74 4.1.1熱分析 74 4.2 La2Zr2O7薄膜分析 76 4.2.1 XRD晶體結構分析 76 4.2.2 SEM表面與剖面分析 77 4.2.3 AFM表面粗糙度分析 79 4.2.4 XPS表面化學分析 81 4.2.5 UV-VIS穿透度分析 85 4.2.6 TEM微結構分析 87 4.3 La2Zr2O7電性分析 93 4.3.1 LZO薄膜厚度不同之Al/LZO/ITO電阻轉換特性影響 93 4.3.2頂部電極不同(Al或Ti)電阻轉換特性影響 100 4.3.3退火溫度不同之Al/LZO/ITO電阻轉換特性影響 105 4.4比較與討論 116 第五章 結論 118 參考文獻 120

    [1] M. Lanza, "A review on resistive switching in high-k dielectrics: A nanoscale point of view using conductive atomic force microscope," Materials, Vol. 7, no. 3, pp. 2155–2182, 2014.
    [2] H. Akinaga and H. Shima, "Resistive random access memory (ReRAM) based on metal oxides," Proc. IEEE, Vol. 98, pp. 2237–2251, 2010.
    [3] Heng-Yuan Lee, Pang-Shiu Chen, Ching-Chiun Wang, Siddheswar Maikap, Pei-Jer Tzeng, Cha-Hsin Lin, Lurng-Shehng Lee, Ming-Jinn Tsai, "Low-power switching of nonvolatile resistive memory using hafnium oxide," Japanese journal of applied physics, Vol. 46 (4S), p. 2175, 2007.
    [4] Kim SJ, Lee H, Hong SH. "Solution-processed flexible NiO resistive random access memory device," Solid State Electron, Vol. 142 pp. 56–61, 2018.
    [5] Cheng-Li Lin, Chi-Chang Tang, Shu-Ching Wu, Pi-Chun Juan, Tsung-Kuei Kang, "Impact of oxygen composition of ZnO metal-oxide on unipolar resistive switching characteristics of Al/ZnO/Al resistive RAM (RRAM)," Microelectronic Engineering, Vol. 136, pp. 15–21, 2015.
    [6] Debashis Panda, Tseung-Yuen Tseng, "Growth, dielectric properties, and memory device applications of ZrO2 thin films," Thin Solid Films, Vol. 531, pp. 1–20, 2013.
    [7] Shi-Xiang Chen, Sheng-Po Chang, Shoou-Jinn Chang, Wei-Kang Hsieh, Cheng-Han Lin, "Highly stable ultrathin TiO2 based resistive random access memory with low operation voltage," ECS Journal of Solid State Science and Technology, Vol. 7 (7), Q3183–Q3188, 2018.
    [8] Hongbin Zhao, Hailing Tu, Feng Wei, Yuhua Xiong, Xinqaing Zhang, Jun Du, "Characteristics and mechanism of nano‐polycrystalline La2O3 thin‐film resistance switching memory," Physica Status Solidi (RRL), Vol. 7(11), pp. 1005–1008, 2013.
    [9] Yi Wu, Shimeng Yu, Byoungil Lee, and Philip Wong, "Low-power TiN/Al2O3/Pt resistive switching device with sub-20 μA switching current and gradual resistance modulation," Journal of Applied Physics, Vol. 110, p. 094104, 2011.
    [10] C. Sun, S.M. Lu, F. Jin, W.Q. Mo, J.L. Song, K.F. Dong, "Control the switching mode of Pt/HfO2/TiN RRAM devices by tuning the crystalline state of TiN electrode," Journal of Alloys and Compounds, Vol. 749, pp. 481–486, 2018.
    [11] Xinjun Liu, Kuyyadi P. Biju, El Mostafa Bourim, Sangsu Park, Wootae Lee, Jungho Shin, Hyunsang Hwang, "Low programming voltage resistive switching in reactive metal/polycrystalline Pr0.7Ca0.3MnO3 devices," Solid State Communications, Vol. 150, pp. 2231–2235, 2010.
    [12] X.B. Yan, K. Li, J. Yin, Y.D. Xia, H.X. Guo, L. Chen, Z.G. Liu, "The resistive switching mechanism of Ag/SrTiO3/Pt memory cells," Electrochemical and Solid-State Letters, Vol. 13(3), H87–H89, 2010.
    [13] Chih-Yang Lin, Chun-Chieh Lin, Chun-Hsing Huang, Chen-His Lin, Tseung-Yuen Tseng, "Resistive switching properties of sol–gel derived Mo-doped SrZrO3 thin films," Surface and Coatings Technology, Vol. 202, pp. 1319–1322, 2007.
    [14] Zhishun Wang, Fei Zeng, Jing Yang, Chao Chen, and Feng Pan, "Resistive switching induced by metallic filaments formation through Poly(3,4-ethylene-dioxythiophene):Poly(styrenesulfonate)," ACS Applied Materials & Interfaces, Vol. 4(1), pp. 447–453, 2011.
    [15] Yu-Chi Chang, Yeong-Her Wang, "Resistive switching behavior in gelatin thin films for nonvolatile memory application," ACS Applied Materials & Interfaces, Vol. 6(8), pp. 5413–5421, 2014.
    [16] Sébastien Saitzek, Zhenmian Shao, Alexandre Bayart, Anthony Ferri, Marielle Huvé, Pascal Roussel, Rachel Desfeux, "Ferroelectricity in La2Zr2O7 thin films with a frustrated pyrochlore-type structure," Journal of Materials Chemistry C, Vol. 2(20), p. 4037, 2014.
    [17] Shengxue Wang, Wei Li, Song Wang, Zhaohui Chen, "Synthesis of nanostructured La2Zr2O7 by a non-alkoxide sol–gel method: From gel to crystalline powders," Journal of the European Ceramic Society, Vol. 35(1), pp. 105–112, 2015.
    [18] Jun Yang, Muhammad Shahid, Meng Zhao, Jing Feng, Chunlei Wan, Wei Pan, "Physical properties of La2B2O7(B=Zr, Sn, Hf and Ge) pyrochlore: First-principles calculations," Journal of Alloys and Compounds, Vol. 663, pp. 834–841, 2016.
    [19] Xueting Wang, Haolei Qian, Liao Guan, Wei Wang, Boran Xing, Xiaoyuan Yan, Shucheng Zhang, Jian Sha, and Yewu Wang, "Influence of metal electrode on the performance of ZnO based resistance switching memories," Journal of Applied Physics, Vol. 122, p. 154301, 2017.
    [20] Woo-Young Yang, Shi-Woo Rhee, "Effect of electrode material on the resistance switching of Cu2O film," Applied Physics Letters, Vol. 91, p. 232907, 2007.
    [21] XiaoLiang Hong, Desmond JiaJun Loy, Putu Andhita Dananjaya, Funan Tan, CheeMang Ng, WenSiang Lew, "Oxide-based RRAM materials for neuromorphic computing," Journal of Materials Science, Vol. 53, pp. 8720–8746, 2018.
    [22] Doo Seok Jeong, Reji Thomas, R S Katiyar, J F Scott, H Kohlstedt, A Petraru, Cheol Seong Hwang, "Emerging memories: resistive switching mechanisms and current status," Reports on Progress in Physics, Vol. 75, p. 076502, 2012.
    [23] Prateek Asthana, Sangeeta Mangesh, "Design and implementation of 4T, 3T and 3T1D DRAM cell design on 32 nm technology," International Journal of VLSI Design & Communication Systems, Vol. 5(4), pp. 47–64, 2014.
    [24] A. Tripathi, S. Biswas, "An innovative solution to minimize the power dissipation in SRAM cell," International Journal of Applied Engineering Research, Vol.7, No.11, 2012.
    [25] Jagan Singh Meena, Simon Min Sze, Umesh Chand, Tseung-Yuen Tseng, "Overview of emerging non-volatile memory technologies," Nanoscale Research Letters, Vol. 9(526), pp. 1–33, 2014.
    [26] Zhitang Song, Sannian Song, Min Zhu, Liangcai Wu, Kun Ren, Wenxiong Song, Songling Feng, "From octahedral structure motif to sub-nanosecond phase transitions in phase change materials for data storage," Science China Information Sciences, Vol. 61(8), p. 081302, 2018.
    [27] Georey W. Burr, Matthew J. Breitwisch, Michele Franceschini, Davide Garetto, Kailash Gopalakrishnan, Bryan Jackson, Bulent Kurdi1, Chung Lam, Luis A. Lastras, Alvaro Padilla, Bipin Rajendran, Simone Raoux, Rohit S. Shenoy, "Phase change memory technology," Journal of Vacuum Science and Technology B, Vol. 28(2), pp. 223–262, 2010.
    [28] X.Q. Wei, L.P. Shi, R. Walia, T.C. Chong, R. Zhao, X.S. Miao, B.S. Quek, "HSPICE macromodel of PCRAM for binary and multilevel storage," IEEE Transactions on Electron Devices, Vol. 53(1), pp. 56–62, 2006.
    [29] Xuanyao Fong, S. Gupta, N. Mojumder, S. H. Choday, C. Augustine, K. Roy, "KNACK: A hybrid spin-charge mixed-mode simulator for evaluating different genres of spin-transfer torque MRAM bit-cells," International Conference on Simulation of Semiconductor Processes and Devices, pp. 51–54, 2011.
    [30] Furqan Zahoor, Tun Zainal Azni Zulkifli, Farooq Ahmad Khanday, "Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications," Nanoscale Research Letters, Vol. 15(1):90, 2020.
    [31] L. Crippa, R. Micheloni, I. Motta, M. Sangalli, "Nonvolatile Memories: NOR vs. NAND Architectures," Memories in Wireless Systems, pp. 29–53, 2008.
    [32] Bernd Hoefflinger, "Memory," The Frontiers Collection, Vol. 2, pp. 181–187, 2020.
    [33] Pengxiao Sun, Nianduan Lu, Ling Li, Yingtao Li, Hong Wang, Hangbing Lv, Qi Liu, Shibing Long, Su Liu, Ming Liu, "Thermal crosstalk in 3-dimensional RRAM crossbar array," Scientific Reports, Vol. 5(1), p. 13504, 2015.
    [34] Long Cheng, Jiancong Li, Hao‐Xuan Zheng, Peng Yuan, Jiahao Yin, Ling Yang, Qing Luo, Yi Li, Hangbing Lv, Ting‐Chang Chang, Xiangshui Miao, "In‐memory hamming weight calculation in a 1T1R memristive array," Advanced Electronic Materials, Vol. 6(9), p. 2000457, 2020.
    [35] Juncheng Wang, Lang Zeng, Gang Du, Jinfeng Kang, Xiaoyan Liu, "RRAM crossbar array with cell selection device: A device and circuit interaction study," IEEE Transactions on Electron Devices, Vol. 60(2), pp. 719–726, 2013.
    [36] Seul Ki Hong1, Ji Eun Kim, Sang Ouk Kim, Byung Jin Cho, "Analysis on switching mechanism of graphene oxide resistive memory device," Journal of Applied Physics, Vol. 110, p. 044506, 2011.
    [37] Sheng-Yu Wang, Chen-Han Tsai, Dai-Ying Lee, Chih-Yang Lin, Chun-Chieh Lin, Tseung-Yuen Tseng, "Improved resistive switching properties of Ti/ZrO2/Pt memory devices for RRAM application," Microelectronic Engineering, Vol. 88(7), pp. 1628–1632, 2011.
    [38] Ding Lin Xu, Ying Xiong, Ming Hua Tang, Bai Wen Zeng, Jing Qi Li, Liu Liu, Lin Qi Li, Shao An Yan, Zhen Hua Tang, "Bipolar resistive switching behaviors in Cr-doped ZnO films," Microelectronic Engineering, Vol. 116(25), pp. 22–25, 2014.
    [39] Shu-ming Gao, Hua Wang, Ji-wen Xu, Chang-lai Yuan, Xiao-wen Zhang, "Effect of annealing temperature on resistance switching behavior of Mg0.2Zn0.8O thin films deposited on ITO glass," Solid-State Electronics, Vol. 76, pp. 40–43, 2012.
    [40] Nuo Xu, Lifeng Liu, Xiao Sun, Xiaoyan Liu, Dedong Han, Yi Wang, Ruqi Han, Jinfeng Kang, Bin Yu, "Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories," Applied Physics Letters, Vol. 92(23), p. 232112, 2008.
    [41] R. Zhang, Kuan-Chang Chang, T. Chang, T. Tsai, Syuan-yong Huang, Wen-Jen Chen, K. Chen, J. Lou, Jung-Hui Chen, T. Young, Min-Chen Chen, H. Chen, S. Liang, Yong-En Syu, S. Sze, "Characterization of oxygen accumulation in indium-tin-oxide for resistance random access memory," IEEE Electron Device Letters, Vol. 35(6), pp. 630–632, 2014.
    [42] G. Landi, Vijaya Subbiah, K. Reddy, A. Sorrentino, Anandan Sambandam, P. Ramamurthy, H. Neitzert, "Evidence of bipolar resistive switching memory in perovskite solar cell," IEEE Journal of the Electron Devices Society, Vol. 6, p. 99, 2018.
    [43] Yanfei Qi, Chun Zhao, Ce Zhou Zhao, Wang ying Xu, Zongjie Shen, Jiahuan He, "Enhanced resistive switching performance of aluminum oxide dielectric with a low temperature solution-processed method," Solid-State Electronics, Vol. 158, pp. 28–36, 2019.
    [44] Hsin-Hung Huang, Wen-Chieh Shih, Chih-Huang Lai, "Nonpolar resistive switching in the Pt/MgO/Pt nonvolatile memory device," Applied Physics Letters, Vol. 96, p. 193505, 2010.
    [45] Byung Joon Choi, D. Jeong, Sei-Yong Kim, C. Rohde, S. Choi, J. H. Oh, H. Kim, C. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, "Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition," Journal of Applied Physics, Vol. 98(3), p. 033715, 2005.
    [46] Sojeong Lee, Taegyun Kim, Bongho Jang, Won-yong Lee, Kyu Chan Song, Hyun Seo Kim, Gyung Yeop Do, "Impact of device area and film thickness on performance of sol-gel processed ZrO2 RRAM," IEEE Electron Device Letters, Vol. 39(5), pp. 668–671, 2018.
    [47] Yong Chan Jung, Sejong Seong, Taehoon Lee, Seon Yong Kim, In-Sung Park, Jinho Ahn, "Effects of hydrogen annealing temperature on the resistive switching characteristics of HfOx thin films," Materials Science in Semiconductor Processing, Vol. 88, pp. 207–213, 2018.
    [48] Lin Chen, Wen Yang, Ye Li, Qing-Qing Sun, Peng Zhou, Hong-Liang Lu, Shi-Jin Ding, David Wei Zhang, "Resistive switching properties of plasma enhanced-ALD La2O3 for novel nonvolatile memory application," Journal of Vacuum Science & Technology A, Vol. 30, p. 01A148, 2012.
    [49] Muhammad Ismail, Chun-Yang Huang, Debashis Panda, Chung-Jung Hung, Tsung-Ling Tsai, Jheng-Hong Jieng, Chun-An Lin, Umesh Chand, Anwar Manzoor Rana, Ejaz Ahmed, Ijaz Talib, Muhammad Younus Nadeem, Tseung-Yuen Tseng, "Forming-free bipolar resistive switching in nonstoichiometric ceria films," Nanoscale Research Letters, Vol. 9, p. 45, 2014.
    [50] Ju-Young Choi, Hwan-Chul Yu, Jeongjun Lee, Jihyun Jeon, Jaehyuk Im, Junhwan Jang, Seung-Won Jin, Kyoung-Kook Kim, Soohaeng Cho, Chan-Moon Chung, "Preparation of polyimide/graphene oxide nanocomposite and its application to nonvolatile resistive memory device," Polymers (Basel), Vol. 10(8), p. 901, 2018.
    [51] Zongjie Shen, Chun Zhao, Yanfei Qi, Wangying Xu, Yina Liu, Ivona Z Mitrovic, Li Yang, Cezhou Zhao, "Advances of RRAM devices: resistive switching mechanisms, materials and bionic synaptic application," Nanomaterials (Basel), Vol. 10(8), p. 1437, 2020.
    [52] Rainer Waser, Masakazu Aono, "Nanoionics-based resistive switching memories," Nature Materials, Vol. 6, pp. 833–840, 2007.
    [53] Amit Prakash, Debanjan Jana, Siddheswar Maikap, "TaOx -based resistive switching memories: Prospective and challenges," Nanoscale Research Letters, Vol. 8, p. 418, 2013.
    [54] M H Tang, Z P Wang, J C Li, Z Q Zeng, X L Xu, G Y Wang, L B Zhang, Y G Xiao, S B Yang, B Jiang, "Bipolar and unipolar resistive switching behaviors of sol–gel-derived SrTiO3 thin films with different compliance currents," Semiconductor Science and Technology, Vol. 26(7), p. 075019, 2011.
    [55] Xinxin Zhang, Ling Xu, Hui Zhang, Jian Liu, Dingwen Tan, Liangliang Chen, Zhongyuan Ma, Wei Li, "Effect of joule heating on resistive switching characteristic in AlOx cells made by thermal oxidation formation," Nanoscale Research Letters, Vol. 15(1), p. 11, 2020.
    [56] Gyeong-Su Park, Xiang-Shu Li, "Observation of electric-field induced Ni filament channels in polycrystalline NiOx film," Applied Physics Letters, Vol. 91(22), p. 222103, 2007.
    [57] Zongjie Shen, Yanfei Qi, Ivona Z Mitrovic, Cezhou Zhao, Steve Hall, Li Yang, Tian Luo, Yanbo Huang, Chun Zhao, "Effect of Annealing Temperature for Ni/AlOx/Pt RRAM Devices Fabricated with Solution-Based Dielectric," Micromachines, Vol. 10(7), p. 446, 2019.
    [58] Shibing Long, Qi Liu, Hangbing Lv, Yingtao Li, Yan Wang, Sen Zhang, Wentai Lian, Kangwei Zhang, Ming Wang, Hongwei Xie, Ming Liu, "Resistive switching mechanism of Ag/ZrO2:Cu/Pt memory cell," Applied Physics A, Vol. 102, pp. 915–919, 2011.
    [59] Akihito Sawa, "Resistive switching in transition metal oxides," Materials Today, Vol. 11(6), pp. 28–36, 2008.
    [60] A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Sun, Y. Y. Xue, "Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface," Applied Physics Letters, Vol. 83(5), p. 957, 2003.
    [61] Dong-jun Seong, Minseok Jo, Dongsoo Lee, Hyunsang Hwang, "HPHA effect on reversible resistive switching of Pt/Nb-doped SrTiO3 Schottky junction for nonvolatile memory application," Electrochemical and Solid-State Letters, Vol. 10(6), p. H168, 2007.
    [62] T. Fujii, M. Kawasaki, "Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3," Applied Physics Letters, Vol. 86(1), p. 012107, 2005.
    [63] T. V. Kundozerova, A. M. Grishin, G. B. Stefanovich, A. A. Velichko, "Anodic Nb2O5 nonvolatile RRAM," IEEE Transactions on Electron Devices, Vol. 59, pp. 1144–1148, 2012.
    [64] Seok Man Hong, Hee-Dong Kim, Ho-Myoung An, Tae Geun Kim, "Effect of work function difference between top and bottom electrodes on the resistive switching properties of SiN films," IEEE Electron Device Letters, Vol. 34(9), pp. 1181–1183, 2013.
    [65] D. J. J. Loy, P. A. Dananjaya, X. L. Hong, D. P. Shum, W. S. Lew, "Conduction mechanisms on high retention annealed MgO-based resistive switching memory devices," Scientific Reports, Vol. 8(1), p. 14774, 2018.
    [66] Shimeng Yu, Ximeng Guan, H.-S. Philip Wong, "Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model," Applied Physics Letters, Vol. 99(6), p. 063507, 2011.
    [67] Fu-Chien Chiu, "A review on conduction mechanisms in dielectric films," Advances in Materials Science and Engineering, Vol. 2014, p. 578168, 2014.
    [68] Juan C. Ranuárez, M.J. Deen, Chih-Hung Chen, "A review of gate tunneling current in MOS devices," Microelectronics Reliability, Vol. 46(12), pp. 1939–1956, 2006.
    [69] Te Jui Yen, Albert Chin, Vladimir Gritsenko, "High performance all nonmetal SiNx resistive random access memory with strong process dependence," Scientific Reports, Vol. 10, p. 2807, 2020.
    [70] Taeheon Kim, Dong-Kyun Kim, Jongtae Kim, James J Pak, "Resistive switching behaviour of multi-stacked PVA/graphene oxide+PVA composite/PVA insulating layer-based RRAM devices," Semiconductor Science and Technology, Vol. 34(6), p. 065006, 2019.
    [71] Qi Liu, Weihua Guan, Shibing Long, Rui Jia, Ming Liu, "Resistive switching memory effect of ZrO2 films with Zr+ implanted," Applied Physics Letters, Vol. 92, p. 012117, 2008.
    [72] Fu-Chien Chiu, Peng-Wei Li, Wen-Yuan Chang, "Reliability characteristics and conduction mechanisms in resistive switching memory devices using ZnO thin films," Nanoscale Research Letters, Vol. 7, p. 178, 2012.
    [73] Sourav Roy, Gang Niu, Qiang Wang, Yankun Wang, "Toward a reliable synaptic simulation using Al-doped HfO2 RRAM," ACS Applied Materials & Interfaces, Vol. 12(9), pp. 10648–10656, 2020.
    [74] Wei Liu, Yang Liu, Ju Wang, Cuncun Wu, Congyue Liu, Lixin Xiao, Zhijian Chen, Shufeng Wang, Qihuang Gong, "Twin domains in organometallic halide perovskite thin-films," Crystals, Vol. 8(5), p. 216, 2018.
    [75] Y. Watanabe, J. G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, A. Beck, "Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals," Applied Physics Letters, Vol. 78, p. 3738, 2001.
    [76] Chun-Chieh Lin, Bing-Chung Tu, Chao-Cheng Lin, Chen-Hsi Lin, "Resistive switching mechanisms of V-doped SrZrO3 memory films," IEEE Electron Device Letters, Vol. 27(9), pp. 725–727, 2006.
    [77] A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, "Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface," Applied Physics Letters, Vol. 85(18), p. 4073, 2004.
    [78] Jinying Huang, Dongge Ma, "Electrical switching and memory behaviors in organic diodes based on polymer blend films treated by ultraviolet ozone," Applied Physics Letters, Vol. 105, p. 093303, 2014.
    [79] Byungjin Cho, Tae‐Wook Kim, Sunghoon Song, Yongsung Ji, Minseok Jo, Hyunsang Hwang, Gun‐Young Jung, Takhee Lee, "Rewritable switching of one diode-one resistor nonvolatile organic memory devices," Advanced Materials, Vol. 22(11), pp.1228–1232, 2010.
    [80] Gang Ou, Wei Liu, Lei Yao, Hui Wua, Wei Pan, "High conductivity of La2Zr2O7 nanofibers by phase control," Journal of Materials Chemistry A, Vol. 2(6), pp. 1855–1861, 2014.
    [81] Elena I. Morosanova, "Silica and silica–titania sol–gel materials: Synthesis and analytical application," Talanta, Vol. 102, pp. 114–122, 2012.
    [82] Ke Xie, Qiang Fu, Greg G. Qiao, Paul A. Webley, "Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture," Journal of Membrane Science, Vol. 572, pp. 38–60, 2019.
    [83] E. Thomas, "Crystal growth and the search for highly correlated ternary intermetallic antimonides and stannides," LSU Doctoral Dissertations, 2006.
    [84] HainanWu, Mingshan Xue, Junfei Ou, Fajun Wang, Wen Li, "Effect of annealing temperature on surface morphology and work function of ZnO nanorod arrays," Journal of Alloys and Compounds, Vol. 565, pp. 85–89, 2013.
    [85] Cheng-Hsing Hsu, Ching-Fang Tseng, Chun-Hung Lai, Hsin-Han Tung, Shih-Yao Lin, "Structural and electrical characteristics of ZrO2–TiO2 thin films by sol–gel method," Materials Science and Engineering: B, Vol. 175(2), pp. 181–184, 2010.
    [86] M.F. Sunding, K. Hadidi, S. Diplas, O.M. Løvvik, T.E. Norby, A.E. Gunnæs, "XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures," Journal of Electron Spectroscopy and Related Phenomena, Vol. 184(7), pp. 399–409, 2011.
    [87] Byeong‐Geun Son, So Yeon Je, Hyo Jin Kim, Chul‐Kyu Lee, Chang‐Kyu Lee, Ah Young Hwang, Ju Yeon Won, Ji Hun Song, Rino Choi, Jae Kyeong Jeong, "High‐performance In–Zn–O thin‐film transistors with a soluble processed ZrO2 gate insulator," Rapid Research Letter, Vol. 7(7), pp. 485–488, 2013.
    [88] Chao Chen, Ti Wang, Hao Wu, He Zheng, Jianbo Wang, Yang Xu, Chang Liu, "Room-temperature electrically pumped near-infrared random lasing from high-quality m-plane ZnO-based metal-insulator-semiconductor devices," Nanoscale Research Letters, Vol. 10, p. 100, 2015.
    [89] Muhammad Ismail, Anwar Manzoor Rana, Ijaz Talib, Tsung-Ling Tsai, Umesh Chand, Ejaz Ahmed, Muhammad Younus Nadeem, Abdul Aziz, Nazar Abbas Shah, Muhammad Hussain, "Room-temperature fabricated, fully transparent resistive memory based on ITO/CeO2/ITO structure for RRAM applications," Solid State Communications, Vol. 202, pp. 28–34, 2015.
    [90] Hsin-Chuan Cheng, Shih-Wei Chen, Jenn-Ming Wu, "Resistive switching behavior of (Zn1−xMgx)O films prepared by sol–gel processes," Thin Solid Films, Vol. 519(18), pp. 6155–6159, 2011.
    [91] Ke-Jing Lee, Li-Wen Wang, Te-Kung Chiang, Yeong-Her Wang, "Effects of electrodes on the switching behavior of strontium titanate nickelate resistive random access memory," Materials (Basel), Vol. 8(10), pp. 7191–7198, 2015.
    [92] Hu Young Jeong, Sung Kyu Kim, Jeong Yong Lee, Sung-Yool Choi, "Role of interface reaction on resistive switching of metal amorphous TiO2/Al RRAM devices," Journal of The Electrochemical Society, Vol. 158(10), p. H979, 2011.
    [93] Chih-Chieh Hsu, Tai-Chun Wan, Che-Chang Tsao, "Forming-free sol-gel ZrOx resistive switching memory," Journal of Alloys and Compounds, Vol. 769, pp. 65–70, 2018.
    [94] Jer-Chyi Wang, De-Yuan Jian, Yu-Ren Ye, Li-Chun Chang, Chao-Sung Lai, "Characteristics of gadolinium oxide resistive switching memory with Pt–Al alloy top electrode and post-metallization annealing," Journal of Physics D: Applied Physics, Vol. 46(27), p. 275103, 2013.
    [95] Zhihua Yong, Karl-Magnus Persson, Mamidala Saketh Ram, Giulio D'Acunto, Yi Liu, Sandra Benter, Jisheng Pan, Zheshen Li, Mattias Borg, Anders Mikkelsen, Lars-Erik Wernersson, Rainer Timm, "Tuning oxygen vacancies and resistive switching properties in ultra-thin HfO2 RRAM via TiN bottom electrode and interface engineering," Applied Surface Science, Vol. 551(15), p. 149386, 2021.
    [96] B. Sun, Y. X. Liu, L. F. Liu, N. Xu, Y. Wang, X. Y. Liu, R. Q. Han, J. F. Kang, "Highly uniform resistive switching characteristics of TiN/ZrO2/Pt memory devices," Journal of Applied Physics, Vol. 105, p. 061630, 2009.

    無法下載圖示 校內:2026-07-23公開
    校外:2026-07-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE