簡易檢索 / 詳目顯示

研究生: 張韶廷
Chang, Shao-Ting
論文名稱: 奈米晶粒氧化錫在硝酸溶液之電化學沉積行為及其於鋰離子二次電池之應用
Electrodeposition Behavior of Nanocrystalline SnO2 in Nitrate Solution and Application in Li-ion Batteries
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 116
中文關鍵詞: 奈米晶粒氧化錫電化學沉積電泳電鍍鋰離子電池陽極氧化鋰
外文關鍵詞: nanocrystalline, tin oxide, electrodeposition, electrophoresis deposition, Li-ion batteries, lithium oxide
相關次數: 點閱:110下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究成功開發一全新奈米晶粒氧化錫鍍膜製程,可於硝酸溶液中沈積一高孔隙度及高附著性之氧化錫薄膜,其沈積過程為電泳及電鍍同時參與之機構,用於鋰離子電池之陽極時有極特殊的性質,不僅活化氧化鋰使其擁有電化學活性,並抑在充放電過程中所發生金屬錫之晶粒成長行為,進而改善其鋰離子電池之性質。

      施加電壓較-0.9 V vs. Ag/AgCl為負時,鍍膜形態為雙層結構,由一厚度較薄、於基板表面之緻密層與一較厚、位於上方之多孔隙層組成,緻密層位於多孔層及電極表面間而增加其附著性,使鍍膜擁有高比表面積及高附著性。緻密層與多孔層皆為奈米晶粒之氧化錫,分別以氧化物電鍍及電泳機構沉積於基板上。

      若以銅作為基板,在電壓施加前,銅離子溶解至硝酸溶液中,在電壓施加後隨氧化錫沉積於基板上,銅離子則佔據氧化錫晶格中錫離子位置形成固溶體,鍍層晶粒大小為5-10 nm,當沉積時間為150,銅離子濃度約為24 at.%。做為鋰離子電池之陽極時,原為電化學鈍性之氧化鋰被奈米尺寸之氧化錫顆粒及氧化錫的銅摻雜影響,成為具電化學活性之物質,在充放電過程中引發氧化鋰的分解/合成,提供除了鋰錫合金反應外的電容量,氧化鋰在首次放電中形成,但過多的氧化鋰分解使活性顆粒在充電時剝落,因此,充放電電壓範圍對其電化學性質的影響也詳細討論,在充放電範圍為1.5 V - 0.3 V vs. Li/Li+所得之循環性最佳,經50次充放電循環後電容量仍為435 mAh/g,大於商用石墨電極之理論電容量(372 mAh/g)。

     In the study, nanocrysatlline SnO2 film has been successfully synthesized in nitrate solution by electrochemical deposition on the Pt-coated Si substrate, where electrodeposition and electrophoresis deposition take place simultaneously. The tin oxide coating posseesses a high adhesion and a high specific surface area. The specific characters not only make Li2O have electrochemical activity, but also hinder the grain growth of metallic Sn during Charge/discharge, and thus the electrochemical behavior of the nanocrystalline tin oxide coating for Li-ion batteris can be promted.

     As the applied voltage is morene gative than -0.9 V vs. Ag/AgCl, a doule-layered tin oxide coating, composed of an upper porous layer and an underlying dense layer, can be obtained. Both the dense and the porous layers are nanocrystalline but they can be attributed to the electrodeposition and electrophoresis deposition, respectively. The dense layer, locating between the porous layer and the substrate, enhances the adhesion for the coating. Thus, the SnO2 coating possesses a high specific area and a good adhesion.

     For the application in the secondary Li-ion battery, the Cu substrate is employed to avoid the electrochemical reaction between the electrolyte and substrate, and thus a Cu-doped nanocrystalline tin oxide coating can be obtained, where the Cu2+ ions occupy the Sn4+ positions. For deposition time of 150 seconds, the Cu concentration in SnO2 lattice is about 24at.% with the grain size range of 5-10 nm, and no other impurity was found. Li2O, being supposed to be an electrochemically inert materials, is activated by both the doped Cu element and the Cu-doped SnO2 nanoparticle. The decomposition/formation of Li2O can offer an extra capacity besides that from the Sn-Li alloy/dealloy reaction; however, an intense decomposition of Li2O damages the adhesion between the active particle and the substrate. An accurate cutoff voltage range, 1.5 V to 0.3 V vs. Li/Li+, not only can provide a proper amount of capacity for the reaction involving LiO2, but also can prevent the severe volume change from the Sn-Li alloy/dealloy reaction. The Cu-doped nanocrystalline SnO2 coating after vacuum heat treatment with the cutoff voltage range of 1.5 V to 0.3 V leads to an optimized performance for charge/discharge test. The capacity does not reduce after 20 cycles and keeps around 435 mAh/g, which is higher than the capaciyt of the batteries with commercial graphite electrodes (372 mAh/g).

    中文摘要…………………………………………………………………… I 英文摘要…………………………………………………………………… II 總目錄……………………………………………………………………… IV 表目錄……………………………………………………………………… VIII 圖目錄……………………………………………………………………… IX 英漢名詞與符號對照表…………………………………………………… XV 第一章 緒論……………………………………………………………… 1 1-1 能源工業之現況及發展趨勢……………………………………… 1 1-2 鋰離子二次電池之應用及與奈米科技之研究…………………… 2 1-3 氧化錫之簡介及其於鋰離子電池之應用……………………..….. 4 第二章 理論基礎………………………………………………………… 9 2-1 電化學基本理論………………………………………………….. 9 2-2 金屬氧化物電鍍理論…………………………………………….. 11 2-3 錫離子在水溶液中之化學行為………………………………….. 13 2-4 DLVO理論與懸浮粒子之穩定性………………………………... 14 2-5 電泳被覆機構理論……………………………………………….. 17 2-6 氧化錫作為鋰離子電池之陽極材料之充放電行為…………….. 19 2-7 鋰離子二次電池之電化學性質分析……………………………… 20 第三章 實驗方法與步驟………………………………………………….. 23 3-1 實驗流程圖…………………………………….…………………. 23 3-2 氧化錫薄膜之被覆……………………………………………….. 24 3-2-1 使用藥品………………………………………………………. 24 3-2-2 溶液配製………………………………………………………. 24 3-2-3 電鍍基材之準備………………………………………………. 24 3-2-4 氧化錫鍍膜之被覆……………………………………………. 25 3-2-5 真空熱處理……………………………………………………. 26 3-3 鍍膜分析………………………………………………………….. 26 3-3-1 鍍膜沉積重量之量測…………………………………………. 26 3-3-2 晶體繞射分析…………………………………………………. 26 3-3-3 穿透式電子顯微鏡分析(TEM)……………………………….. 27 3-3-4 掃瞄式電子顯微鏡觀察(SEM) ………………………………. 27 3-3-5 霍式轉換紅外線光譜分析(FT-IR) …………………………… 27 3-3-6 電子光譜儀化學分析(XPS) ………………………………….. 28 3-3-7 歐傑電子能譜儀分析(AES) ………………………………….. 28 3-3-8 比表面積分析(BET) ………………………………………….. 28 3-3-9 界面電位量測…………………………………………………. 28 3-4 鋰離子二次電池測試…………………………………………….. 28 3-4-1 鋰離子電池之組裝……………………………………………. 28 3-4-2 鋰離子電池之電容量測試……………………………………. 29 3-4-3 鋰離子電池之電容量微分分析………….…………………… 29 第四章 氧化錫鍍膜分析………..…………..………..………..………… 30 4-1 鍍膜型態及鍍膜分析…………………………………………….. 30 4-1-1 不同電壓下之電流曲線圖……………………………………. 30 4-1-2 初鍍膜之晶體結構分析…………………………………….… 32 4-1-3 初鍍膜之表面鍵結分析………………………………………. 32 4-1-4 初鍍膜之TEM分析………………………………………….. 34 4-1-5 初鍍膜表面形態………………………………………………. 36 4-2 鍍膜電鍍機構之研究……………………..……………………… 39 4-2-1 鍍膜之雙層結構………………………………………………. 39 4-2-2 電鍍溶液…………………………………………………….… 40 4-2-3 電極排列對薄膜被覆之影響…………………………………. 44 4-2-4 氧化錫薄膜在硝酸溶液中沉積機構之討論……..…...……… 50 4-3 熱處理對氧化錫鍍膜之影響…………………………………….. 58 4-3-1鍍膜之晶體結構分析………………………………………….. 58 4-3-2鍍膜之鍵結及價數分析……………………………………….. 58 4-4 金屬銅基材沉積氧化錫鍍膜…………………………………….. 63 4-4-1 鍍膜之分與結構分析…………………………………………. 63 4-4-2 銅摻雜氧化錫之沉積機構……………………………………. 65 4-4-3 銅摻雜氧化錫薄膜的沉積行為………………………………. 68 4-5 小結…………...……………………………………………………. 72 第五章 電鍍氧化錫薄膜於鋰離子二次電池之應用…………………….. 73 5-1 電鍍氧化錫作為鋰電池陽極之電化學反應…………………….. 73 5-1-1 奈米晶粒與銅摻雜對電化學性質之影響……………………. 73 5-1-2 充放電電壓範圍對電容量之影響……………………………. 79 5-2 提升鋰離子電池循環性之研究………………………………….. 84 5-2-1 充放電電壓範圍之影響………………………………………. 84 5-2-2 鍍膜熱處理對充放電性質之影響……………………………. 90 5-3 小結………………………………...………………………………. 91 第六章 總結論……………………………………………………………. 94 參考文獻…………………………………………………………………… 96 附錄 一……………………………………………………………………. 112 附錄 二……………………………………………………………………. 113 致謝………………………………………………………………………… 144 個人資料…………………………………………………………………… 145

    1 A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, and J. B. Goodenough, “Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates,” J. Electrochem. Soc. 144, (1997) 1609
    2 C. R. Sides, N. Li, C. J. Patrissi, B. Scrosati, and C. R. Martin, “Nanostructure for Li-ion batteries,” MRS Bull. 27 (2002) 1
    3 C. A. Mina, F. E. Varela, L. F. Hernandez, G. O. Ybarra, and J. R. Vilche, “Semiconductor properties of passive oxide layers on binary tin + indium alloys,” J. Electrochem. Chem., 427 (1997) 189
    4 F. R. Messia, L. V. A. Scalvi, M. S. Li, C. V. Santilli, and S. H. Pulcinelli “Oxygen related defects excitation and photoconductivity dependence of SnO2 sol-gel films with several light sources,” Radia Eff. Defects Solids, 150 (1999) 319
    5 J. H. Grimm, D. G. Bessarabov, U. Simon, and R. D. Sanderson, “Characterization of doped tin dioxide anodes prepared by a sol-gel technique and their application in an SPE-reactor,” J. Appl. Electrochem., 30 (2000) 293
    6 K. Tennakone and J. Bandara, “Photocatalytic activity of dye-sensitized tin(IV) oxidenanocrystalline particles attached to zinc oxide particles: long distance electron transfer via ballistic transport of electrons across nanocrystallites,” Appl. Catal., A208 (2001) 335
    7 A. Mills and S. Le Hunte, “An overview of semiconductor photocatalysis,” J. Photochem. Photobiol., A108 (1997) 1.
    8 J. Zhihong, H. J. Zhong, Z. L. Jin, R. F. Savinell, and C. C. Liu, “Development of a submicron optochemical potassium sensor with enhanced stability due to internal reference,” Sens. Acuators, B52 (1998) 188
    9 O. K. Varghese and L. K. Malhotra, “Electrode-sample capacitance effect on ethanol sensitivity of nano-grained SnO2 thin films,” Sens. Acuators, B53 (1998) 19
    10 V. Jayaraman, K. I. Gnanasekar, E. Prabhu, T. Gnanasekaran, and G. Periaswami, “A low temperature H2 sensor based on intermediate hydroxyl tin oxide,” Sens. Acuators, B55 (1999) 147
    11 Y. Shimizu, K. Yamaguchi, K. Fukunaga, Y. Tokao, T. Hyodo, and M. Egashira, “Acetaldehyde gas-sensing properties and surface chemistry of SnO2-based sensor materials,” J. Electrochem. Soc., 146 (1999) 1222
    12 T. Fukano, T. Motohiro, T. Ida, and H. Hashizume, “Ionization potentials of transparent conductive indium tin oxide films covered with a single layer of fluorine-doped tin oxide nanoparticles grown by spray pyrolysis deposition,” J. App. Phys., 97 (2005) 1
    13 E. Elangovan and K. Ramamurthi, “Studies on optical properties of polycrystalline SnO2:Sb thin films prepared using SnCl2 precursor,” J. Optoelectron. Adv. Mater., 38 (2003) 779
    14 Y. Takahashi and Y. Wada, “Dip-coating of Sb-doped SnO2 films by ethanolamine-alkoixde method,” J. Electrochem. Soc., 137 (1990) 267
    15 K. R. Prasad and N. Miura, “Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors,” Electrochem. Comm., 6 (2004) 849
    16 Z. Galus, Encyclopedia of Electrochemistry of the Elements, ed. A. J. Bard, Dekker, New York, (1973) p.223
    17 T. A. Heimer, E. J. Heiweil, C. A. Bignozzi, and G. J. Meyer, “Electron injection, recombination, and halide oxidation dynamics at dye-sensitized metal oxide interfaces,” J. Phys. Chem., A104 (2000) 4256
    18 D. Liu, L. H. Gordon, and V. K. Prashant, “Photochemistry on surfaces. Intermolecular energy electron transfer processes between excited Ru(bpy)32+ and H-aggregates of cresyl violet on SiO2 and SnO2 colloids,” J. Phys. Chem., 99 (1995) 16768
    19 N. G. Park, M. G. Kang, K. M. Kim, K. S. Ryu, S. H. Chang, D. K. Kim, J. Van de Lagemaat, K. D. Benkstein, and A. J. Frank, “Morphological and photoelectrochemical characterization of core-shell nanoparticle films for dye-sensitized solar cells: Zn-O type shell on SnO 2 and TiO2 cores,” Langmuir, 20, (2004) 4246
    20 J. Y. Kim, D. E. King, P. N. Kumta, and G. E. Blomgren, “Chemical synthesis of tin oxide–based materials for Li-ion battery anodes,” J. Electrochem. Soc., 147 (2000) 4411
    21 F. Belliard, P. A. Connor, and J. T. S. Irvine, “Novel tin oxide-based anodes for Li-ion batteries,” J. Power Sources, 97-98 (2001) 223
    22 H. Li, X. Huang and L. Chen, “Direct Imaging of the Passivating Film and Microstructure of Nanometer-Scale SnO Anodes in Lithium Rechargeable Batteries,” Electrochem. Solid-State Lett., 1 (1998) 241
    23 M. Šeruga, M. M. Huković, T. Valla, M. Milun, H. Hoffschultz, and K. Wandelt, “Electrochemical and X-ray photoelectron spectroscopy studies of passive film on tin in citrate buffer solution,” J. Electroanal. Chem., 407, (1996) 83
    24 M. Zheng, G. Li, X. Zhang, S. Huang, Y. Lei, and L. Zhang, “Fabrication and structural characterization of large-scale uniform SnO2 nanowire array embedded in anodic alumina membrance,” Chem. Mater., 13 (2001) 3859
    25 Y. He, Y. Li, J. Yu, and Y. Qian, “Chemical control synthesis of nanocrystalline SnO2 by hydrothermal reaction,” Mater. Lett., 40 (1999) 23
    26 Q. Chen, Y. Qian, Z. Chen, G. Zhou, and Y. Zhang, “Fabrication of ultrafine SnO2 thin films by the hydrothermal method,” Thin Solid Films, 264 (1995) 25
    27 S. Spark and D. J. Mackenzie, “Sol-gel divided tin oxide thin films,” Thin Solid Films, 258 (1995) 268
    28 P. Veluchamy, M. Tsuji, T. Nishio, T. Aramoto, H. Higuchi, S. Kumazawa, S. Shibutani, J. Nakajima, T. Arita, H. Ohyama, A. Hanafusa, T. Hibino, and K. Omura, “A pyrosol process to deposit large-area SnO2: F thin films and its use as a transparent conducting substrate for CdTe solar cells,” Sol. Energy Mater. Sol. Cells, 67 (2001) 179
    29 B. Stjerna, C. G. Granqvist, A. Seidel, and L. Haggstorm, Characterization of RF-sputtered SnOx thin film by electron microscopy, Hall effect measurement, and Mössbauer spectroscopy, J. Appl. Phys., 68 (1990) 6241
    30 Z. Tao, Z. Tonghe, C. Jun, Z. Huixing, and M. Benkun, “ The effect of Mg and Nb implantation on mean grain size of SnO2 thin films,” Nucl. Instr. Meth. Phys. Res., B122 (1997) 59
    31 E. Shanthi, V. Dutta, A. Banerjee, and K. L. Chopra, “Electrical and optical properties of undoped and antimony doped tin oxide films,” J. Appl. Phys., 51 (1980) 6243
    32 S. Shanthi, C. Subramanian, and P. Ramasamy, “Preparation and properties of sprayed undoped and fluorine doped tin oxide films,” Mater. Sci. Eng., B57 (1999) 127.
    33 M. Kojima, H. Kato, A. Imai, and A. Yoshida, Electronic conduction of tin oxide thin films prepared by chemical vapor deposition, J. Appl. Phys., 64 (1988) 1902
    34 S. Suh, Z. Zhang, W. K. Chu, and D. M. Hoffman, “Atmospheric-pressure chemical vapor deposition of fluorine-doped tin oxide thin films,” Thin Solid Films, 345 (1999) 240.
    35. M. Izaki and T. Omi, “Electrolyte optimization for cathodic growth of zinc oxide films,” J. Electrochem. Soc., 143 (1996) L53
    36 S. Peulon and D. Lincot, “Mechanism study of cathodic electrodeposition of zinx oxide and zinc hydroxychloride flims from oxygenated aqueous zinc chloride solutions,” J. Electrochem. Soc., 145 (1998) 864
    37 A. A. Vertegel, M. G. Shumsky, and J. A. Switzer, “Electrochemical growth of a Cu2O/PbS epitaxial heterojunction on single crystal Au(100),” Chem. Mater., 12 (2000) 596
    38 E. W. Bohannan, M. G. Shumsky, and J. A. Switzer, “Epitaxial electrodeposition of copper(I) oxide on single-crystal gold(100),” Chem. Mater., 11 (1999) 2289
    39 J. N. Yao, P. Chen, and A. Fujishoma, “Electrochromic behavior of electrodeposited tungsten oxide thin films,” J. Electroanal. Chem., 406 (1996) 223
    40 E. W. Bohannan, C. C. Jaynes, M. G. Shumsky, J. K. Barton, and J. A. Switzer, “Low-temperature electrodeposition of the high-temperature cubic polymorph of bismuth(III) oxide,” Solid State Ionics, 131 (2000) 97
    41 T. S. N. Sankara Narayanan, and S. K. Seshadri, “Cathodic electrosynthesis of alumina thin films and powders,” J. Mater. Sci. Lett., 19 (2000) 1715
    42 A. M. Peir, E. Brillas, J. Peral, X. Domènech and J. A. Allón, “Electrochemically assisted deposition of titanium dioxide on aluminium cathodes,” J. Mater. Chem., 12 (2002) 2769
    43 Y. Zhou and J. A. Switzer, “Growth of cerium(IV) oxide films by the electrochemical generation of base method,” J. Alloys Compd., 237 (1996) 1
    44 I. Zhitomirsky, L. Gal-Or, A. Kohn, and H. W. Hennicke, “Electrodeposition of ceramic films from non-aqueous and mixed solutions,” J. Mater. Sci., 30 (1995) 5307
    45 R. N. Bhattacharya, R. D. Blaugher, Z. F. Ren,W. Li, J. H. Wang, M. Paranthaman, D. T. Verebelyi, and D. K. Christen, “Superconducting epitaxial (TlBi)0.9Sr1.6Ba0.4Ca2Cu3Ag0.2Ox film from an electrodeposited precurso,” Electrochemical and Solid-State Lett., 1 (1998) 165
    46 G. H. A. Therese and P. V. Kamath, “Electrochemical synthesis of metal oxides and hydroxides,” Chem. Mater., 12 (2000) 1195
    47 R. Kubo, A. Kawabata, and S. I. Kobayashi, “Electronic properties of small particles,” Annu. Rev. Mater. Sci., 14 (1984) 49
    48 P. Ball and L. Garwin, “Science at the atomic scale,” Nature, 355, (1992) 761
    49 Y. Xie, B. H. Wang, H. Quan, W. Yang, and P. M. Hui, “Finite-size effect in the Eguiluz and Zimmermann model of herd formation and information transmission,” Phys. Rev., E65 (2002) 1
    50 D. L. Feldheim and C. D. Keating, “Self-assembly of single electron transistors and related devices,” Chem. Soc. Rev., 27 (1998) 1
    51 Z. Hens, D. Vanmaekelbergh, E. S. Kooij, H. Wormeester, G. Allan, and C. Delerue, “Effect of Quantum Confinement on the Dielectric Function of PbSe,” Phys. Rev. Lett., 92 (2004) 26808/1
    52 I. A. Courtney and J. R. Dahn, “Key factors controlling the reversibility of the reaction of lithium with SnO2 and SnBPO6 glass,” J. Electrochem. Soc., 144 (1997) 2943
    53 I. A. Courntey, W. R. Mckinnon, and J. R. Dahn, “On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium,” 146 (1999) 59
    54 S. C. Nam, Y. H. Kim, W. I. Cho, B. W. Cho, H. S. Chun, and K. S. Yunb, “Charge–Discharge Performance of Electron-Beam-Deposited Tin Oxide Thin-Film Electrodes,” Electrochem. Solid-State Lett., 2 (1999) 9
    55 H. Li, X. Huang, and L. Chen, “Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries,” J. Power Source, 81-82 (1999) 340
    56 H. Li, X. Huang, and L. Chen, “Anodes based on oxide materials for lithium rechargeable batteries,” Solid State Ionics, 123 (1999) 189
    57 N. Li, C. R. Martin, and B. Scrosati, “A high-rate, high-capacity, nanostructured tin oxide electrode,” Electrochem. Solid State, 3 (2000) 316
    58 J. O. Besenhard, Handbook of battery materials, Wiley, New York, (1999) Charp2 and in Part I, pp.19-82
    59 A. J. Bard and L. R. Faulkner, Electrochemical Method, Wiley, New York, (1980) pp.21-22
    60 P. Delahay, Double layer and electrode kinetics, Wiley-Interscience, New York, (1965) Charp 7
    61 T. E. Gruz, Kinetics of electrode processes, Wiley-Interscience, New York, (1972) Charp 1
    62 I. Zhitomirsky, “New development in electrolytic deposition of ceramic films,” Am. Ceram. Soc. Bull., (2000) 57
    63 S. Peulon and D. Lincot, “Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films,” Adv. Mater., 8 (1996) 166
    64 A. A. Vertegel, E. W. Bohannan, M. G. Shumsky, and J. A. Switzer, “Epitaxial electrodeposition of orthorhombic a-PbO2 on (100)-oriented single crystal Au,” J. Electrocehm. Soc., 148 (2001) C253
    65 Th. Pauporte´ and D. Lincot, “Heteroepitaxial electrodeposition of zinc oxide films on gallium nitride,” Appl. Phys. Lett., 75 (1999) 3817
    66 V. N. Nazarenko, V. P. Antonovich, and E. M. Nevskaya, “Spectrophotometric determination of the hydrolysis constants of Tin(IV) ions,” Russ. J. Inorg Chem., 16 (1971) 980
    67 A. B. Garrett and R. E. Heiks, “Equilibria in the stannous oxide-sodium hydroxide and in the stannous oxide-hydrochloride acid system at 25o. Analysis of dilute solutions of stannous tin,” J. Am. Ceram. Soc., 63 (1941) 562
    68 E. S. Boichinova and M. M. Kolosova, “Chemical stability of hydrated tin dioxide and the possibility using it in corrosive media,” Zh. Prikl. Khim., 60 (1987) 911
    69 R. S. Hiratsuka, S. H. Pulcinelli, and C. V. Santilli, “Formation of SnO2 gels form dispersed sols in aqueous colloidal solution,”J. Non-Cryst. Solids, 121 (1990) 76
    70 Y. Tang, Y. Liu, U. Sampathkumaran, M. Z. Hu, R. Wang, and M. R. DeCuire, “Particles growth and particle-surface interactions during low-temperature deposition of ceramic thin film,” Solid State Inonics, 151 (2002) 69
    71 A. M. Lislam, B. Z. Chowdhry, and M. J. Snowden, “Heteroaggregation in colloidal dispersions,” Adv. Colloid Interface Sci., 62 (1995) 109
    72 P. Sarkar and P. S. Nicholson, “Electrophoresis deposition (EPD): Mechanism, kinetics, and application to ceramics,” J. Am. Ceram. Soc., 79 (1996) 1987
    73 J. Sun, B. V. Velamakanni, W. W. Gerberich, and L. F. Francis, “Aqueous latex/ceramic nanoparticle dispersion: colloidal stability and coating properties,” J. Colloid Interface Sci., 280 (2004) 387
    74 J. Will, M. K. M. Hruschka, L. Gubler, and L. J. Gauckler, “Electrophoretic deposition of zirconia on porous anodic substrates,” J Am. Ceram. Soc., 84 (2001) 328
    75 W. Liu, X. Huang, Z. Wang, H. Li, and L. Chen, “Studies of stannic oxide as an anode material for lithium-ion batteries,” J. Electrochem. Soc., 145 (1998) 59
    76 I. A. Courtney and J. R. Dahn, “Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites,” J. Electrochem. Soc., 144 (1997) 2045
    77 J. H. Kim, G. J. Jeong, Y. W. Kim, H. J. Sohn, C. W. Park, and C. K. Lee, “Tin-based oxides as anode materials for lithium secondary batteries,” J. Electrocehm. Soc., 150 (2003) A1544
    78 S. H. Kang, J. Kim, M. E. Stoll, D. Abraham, Y. K. Sun, and K. Amine, “Layered Li(Ni0.5-xMn0.5-xM2x)O2 (M= Co, Al, Ti; x= 0, 0.005) cathode materials for Li-ion rechargeable batteries,” Journal of Power Sources, 112 (2002) 41
    79 J. H. Kim, G. J. Jeong, Y. W. Kim, H. J. Sohn, C. W. Park, and C. K. Lee, “Tin-based oxides as anode materials for lithium secondary batteries,” J. Electrochem. Soc., 150 (2003) 1544
    80 C. I. House and G. H. Kelsall, “Potential-pH diagrams for Sn/H2O-Cl system,” Electrochim. Acta, 29 (1984) 1459
    81 M. H. Froning, M. E. Shanley, and E. D. Verink Jr, “An important method for calculation of potential-pH diagram of material-ion-water system by computer,” Corr. Sci., 16 (1976) 371
    82 R. O. Ansell, T. Dickinson, A. F. Povey, and P. M. A. Sherwood, “X-ray photoelectron spectroscopic studies of tin electrodes after polarization in sodium hydroxide solution,” J. Electrochem. Soc., 124 (1977) 1360
    83 W. S. Epling, C. K. Mount and G. B. Hoflund, “Surface characterization study of the chemical alteration of an air-exposed polycrystalline tin foil during H-atom exposures,” Appl. Surf. Sci., 134, (1998) 187
    84 Y. S. Choe, J. H. Chung, D. S. Kim and H. K. Baik, “Synthesis of tin oxide films by dual ion beam sputtering using Sn target and oxygen ion beam,” Surf. Coat. Technol., 112, (1999) 267
    85 P. Serrini, V. Briois, M. C. Horrillo, A. Traverse, and L. Manes, “Chemical composition and crystalline structure of SnO2 thin films used as gas sensors,” Thin Solid Films, 304 (1997) 113
    86 D. Briggs and M. P. Seah, Practical Surface Analysis. Auger and X-ray Photoelectron Spectroscopy, Wiley, New York, 1990, p.501
    87 D. D. Vuong, S. Sakai, K. Shimanoe, and N. Yamazoe, “Preparation of grain size-controlled tin oxide sols by hydrothermal treatment for thin film sensor application,” Sens. Actuator, B103, (2004) 386
    88 C. M. Chen, X. G. Zhang, and H. L. Li, “Effect of pH on the electrochemical deposition of cadmium selenide nanocrystal films,” Mater. Sci. Engin., B84, (2001) 265
    89 T. J. Barton, L. M. Bull, W. G. Klemperer, D. A. Loy, B. McEnaney,M. Misono, P. A. Monson, G. Pez, G. W. Scherer, J. C. Vartuli, and O. M. Yaghir, “Tailored Porous Materials,” Chem. Mater., 11 (1999) 2633
    90 J. C. Groen, L. A.A. Peffer, and J. P. Ramírez, “Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis,” Micropor. Mesopor.Mater., 60 (2003) 1
    91 B. C. Bunker, P. C. Rieke, B. J. Tarasevich, A. A. Campbell, G. E. Fryxell, G. L. Graff, L. Song, J. Liu, J. W. Virden, and G. L. McVay, “Ceramic thin film formation on functioned interfaces through biomimetic processing,” Science, 264, (1994) 48
    92 S. Supothina, M. R. DeGuire, and A. H. Heuer, “Nanocrystalline tin oxide thin film via liquid flow deposition,” J. Am. Ceram. Soc., 86 (2003) 2074
    93 N. Shirahata, W. Shin, N Murayama, A. Hozumi, Y. Yokogawa, T. Kameyama, Y. Masuda, and K. Koumoto, “Reliable monolayer-template patterning of SnO2 thin films from aqueous solution and their hydrogen-sensing properties,” Adv. Funct. Mater., 14 (2004) 580
    94 S. Belin,L. R. B. Santos, V. Briois, A. Lusvardi, C. V. Santilli, S. H. Pulcinelli, T. Chartier, and A. Larbot, “Preparation of ceramic membranes from surface modified tin oxide nanoparticles,” Colloids & Surf. A: Physicochem. Engin. Aspects, 216, (2003) 195
    95 D. Raviendra and J. K. Sharma, “Electroless deposition of SnO2 and Antimony doped SnO2 films,” J. Phys. Chem. Solids, 46 (1985) 945
    96 Y. C. Wang, I. C. Leu, and M. H. Hon “Preparation of nanosized ZnO arrays by electrophoretic deposition,” Electrochem. Solid-State Lett., 5 (2002) C53
    97 R. C. Bailey, K. J. Stevenson and J. T. Hupp, “Assembly of micropatterned colloidal gold thin films via microtransfer molding and electrophoretic deposition,” Adv. Mater., 12 (2000) 1930
    98 C. O. Kim, D. S. Seo, and J. P. Hong, “Analysis of electrophoretically deposited low-voltage phosphors mixed with In2O3 conducting powders for field emission displays,” J. Electrochem. Soc., 147 (2000) 2394
    99 M. Izaki, “Characterization of transparent zinc oxide films prepared by electrochemical reaction,” J. Electrochem. Soc., 144 (1997) 1949
    100 T. D. Golden, M. G. Shumsky, Y. Zhou, R. A. VanderWerf, R. A. V. Leeuwen, and J. A. Switzer, “Electrochemical deposition of copper(I) oxide films,” Chem. Mater., 8 (1996) 2499
    101 I. Zhitomirsky and L. Gal-Or, in Intermetallic and Ceramic Coatings, ed. B. Dahotre and T. S. Sudarshan, New York Basel, (1999) p.92
    102 G. Zhang and M. Liu, “Effect of particle size and dopant on properties of SnO2-based gas sensors,” Sens. Actuators, B69 (2000) 144
    103 B. D. Cullity, “Elements of x-ray diffraction 2nd ed.,” Addison-Wesley Publishing Company, Inc, (1978) pp.99-102
    104 P. G. Harrison and B. M. Maunders, “Tin oxide surfaces. Part 17.-An infrared and thermogravimetric analysis of the thermal dehydration of tin(IV) oxide gel,” J. Chem. Soc. Faraday Trans. I, 83 (1987) 3383
    105 C. A. Monia and G. O. Ybarra, “Study of passive films formed on Sn in the 7-14 pH range,” J. Electroanal. Chem., 504 (2001) 175
    106 B. J. Trzebiatowska, J. Hanuza and W. Wojciechowski, “Infrared vibrational frequencies of the X-O-X bondings fes the IV-th periodic group of elements,” Spectrochimica. Acta, A23 (1965) 2631
    107 J. J. Max, M. Turdel and C. Chapados, “Subtraction of the water spectra from the infrared spectrum of saline solutions,” App. Spectrosc., 52 (1998) 234
    108 D. Aurbach and Y. Gofer, “Nonaqueous electrochemistry,” ed. D. Aurbach, New York Basel, (1999) pp.149-152
    109 S. C. Nam, Y. S. Yoon, W. I. Cho, B. W. Cho, and H. S. Chun, “Reduction on irreversibility in the first charge of tin oxide thin film negative electrodes,” J. Electrochem. Soc., 148 (2001) A220
    110 H. Morimoto, M. Nakai, M. Tatsumisago, and T. Minami, “Mechanochemical synthesis and anode properties of SnO-based amorphous materials” J. Electrochem. Soc., 146 (1999) 3970
    111 M. Mohamedi, S. J. Lee, D. Takahashi, T. Itoc and I. Uchida, “Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion battery,” Electrochimca Acta, 46 (2001) 1168
    112 A. Yu and R. Frech, “Mesoporous tin oxide as lithium interaction anode materials,” J. Power Sources, 104 (2002) 97
    113 J. S. Sakamoto, C. K. Huang, S. Surampudi, M. Smart, and Wolfenstine, “The effects of particle size on SnO electrode performance in lithium-ion cell,” Mater. Lett., 33 (1998) 327
    114 F. J. Li, and H. K. Ping, “Chemical polishing of copper,” Trans. Inst. Met. Fin., 73, (1995) 139
    115 E. Cano, J. L. Polo, A. La Iqlesia, and J. M. Bastidas, “Rate control for copper tarnishing,” Corr. Sci., 47, (2005) 977
    116 G. E. S. Brito, C. V. Santilli, S. H. Pulcineli, and A. F. Craievich, “SAXS measurement of the porosity in Cu(II)-doped SnO2 xerogels during crystallinzation,” J. Non-Cryst. Solids, 217 (1997) 41
    117 S. R. Davis, A. V. Chadwick, and J. D. Wright, “A Combined EXAFS and Diffraction Study of Pure and Doped Nanocrystalline Tin Oxide,” J. Phys. Chem., B101 (1997) 9901
    118 T. L. Barr, “An ESCA study of the passivation of the elemental materials,” J. Phys. Chem., 82 (1978) 1801
    119 S. C. Nam, Y. S. Yoon, W. I. Cho, B. W. Cho, H. S. Chun, and K. S. Yun, “Enhancement of thin film tin oxide negative electrodes for lithium batteries,” Electrochem. Solid-State Lett., 3 (2001) 6
    120 M. Mohamedi , S. J. Lee, D. Takahashi, M. Nishizawa, T. Itoh, and I. Uchida, “Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion batteries,” Electrochimica Acta, 46 (2001) 1161
    121 R. Retoux, T. Brousse, and D. M. Schleich, “High-resolution electron microscopy investigation of capacity fade in SnO2 electrodes for lithium-ion batteris,” J. Electrocehm. Soc., 146 (1999) 2472
    122 Y. I. Kim, H. S. Moon, K. S. Ji, S. H. Seong, and J. W. Park, “Effect of Si addition to thin-film SnO2 microbattery anodes on cycling performance,” J. Power Sources, 101 (2001) 253.
    123 P. Poizot, S. Larurllr, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature, 407 (2000) 496
    124 S. C. Nam, C. H. Paik, W. I. Cho, B. W. Cho, H. S. Chun, and K. S. Yun, “Electrochemical characterization of various tin-based oxide as negative electrode for rechargeable lithium batteries,” J. Power Sources, 84 (1999) 24
    125 A. Débart, L. Dupont, P. Poizot, J. B. Leriche, and J. M. Tarascon, “A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium,” J. Electrocehm. Soc., 148 (2001) 1266
    126 S. C. Liao and J. Colaizzi, “Refinement of nanoscale grain structure in bulk titania via a transformation-assisted consolidation (TAC) method,” J. Am. Ceram. Soc., 83 (2000) 2163
    127 R. Enderle, F. G. Neunhoeffer, M Göbbels, F. A. Müller, and P. Greil, “Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by Rietveld refinement,” Biomater., 26 (2005) 3379
    128 Y. Wang, J. N. Wang., J. Yang, and Q. Xia, “Grain refinement of a TiAl alloy by heat treatment through near gamma transformation,” J. Mater. Sci., 36 (2001) 4465
    129 N. Tamura, R. Ohshita, M. Fujimoto, M. Kamino, and S. Fujitani, “Advanced structure in electrodeposited baed negative electrode for Lithium secondary batteries,” J. Electrochem. Soc. 150 (2003) A679

    下載圖示 校內:立即公開
    校外:2005-11-23公開
    QR CODE