簡易檢索 / 詳目顯示

研究生: 洪瑋三
Hung, Wei-Shan
論文名稱: 利用快速移動估算及深度搜尋演算法執行3D影像壓縮
3D Image Compression By Fast Motion Estimation And Depth Search Algorithm
指導教授: 賴源泰
Lai, Yen-Tai
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 64
中文關鍵詞: H.264/AVC深度搜尋移動估算
外文關鍵詞: H.264/AVC, depth search, motion estimation
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著近年來3D電影的風行,如前些年的阿凡達(Avatar),以及今年火紅的少年Pi的奇幻漂流(Life of Pi) 等電影推出,讓3D影像形成影視娛樂中不可或缺的一員。然而除了電影產業,3DTV也將逐步進入家庭的影音娛樂。
    對於3D影像的壓縮,目前廣為使用的技術稱為 ”Advanced Three-Dimensional Television System Technologies (ATTEST).” 它將彩色影像及對應到的深度影像壓縮編碼,經由傳輸以及解碼,再透過 Depth-Image-Based Rendering (DIBR) 的技術,合成出不同視角的影像。
    然而,ATTEST系統中前端壓縮的資料量仍舊龐大,因此在本篇論文中提出一個新的3D影像壓縮的演算法。在H.264/AVC架構下,利用分享移動向量以及深度搜尋來降低深度影像壓縮的計算複雜度,並且提出一個快速移動估算演算法,提升3D影像的壓縮效率,同時保持影像品質。

    With the popularity of 3D movies in recent years, such as Avatar few years ago, and the most popular Life of Pi this year, 3D images becomes an integral part in the entertainment. Moreover, in addition to the movie industry, 3DTV will gradually enter the home audio and video entertainment.
    For 3D image compression, there is one of the most famous techniques called “Advanced Three-Dimensional Television System Technologies (ATTEST).” It use a monoscopic video (color image) and per pixel depth information (depth image) to compress and encode. Through transmission and decoding, it used the technique of Depth-Image-Based Rendering (DIBR) to synthesize free view-points views.
    However, there still has a huge amount of data in the encoder of the ATTEST system. Therefore, this thesis proposed a new 3D image compression algorithm. In H.264/AVC, we use sharing motion vector and depth search to reduce the computational complexity in the depth image compression, and also propose a fast motion estimation algorithm to increase the compression efficiency in the 3D image while maintaining image quality.

    Abstract Table of Contents List of Tables List of Figures Chapter 1 Introduction 1 1.1 Overview of 3D Image 1 1.2 Motivation 3 1.3 Thesis Organization 4 Chapter 2 Background 5 2.1 3D Image Codec System 5 2.2 Basic concept of H.264/AVC 7 2.2.1 Intra Prediction Modes 8 2.2.2 Inter Prediction Modes 13 2.2.2.1 Multiple Reference Frame 14 2.2.2.2 Motion Estimation 15 2.2.2.3 Mode Decision 16 2.2.2.4 Motion Compensation 19 2.2.2.5 Residual Error 19 2.2.3 Transform and Quantization 21 2.2.4 De-blocking Filter 22 2.2.5 Entropy Coding 23 2.3 Motion Vector Prediction 24 2.4 Block Matching Search Algorithms 27 2.4.1 Full Search Algorithm 27 2.4.2 Three Step Search Algorithm 28 2.4.3 Four Step Search Algorithm 29 Chapter 3 Proposed Methods 33 3.1 Motion Vectors Sharing 34 3.2 Depth Search Algorithm 40 3.3 Fast Motion Estimation Algorithm 43 3.3.1 Dynamic Search Range Decision 43 3.3.2 Fast Mode Decision Algorithm 48 Chapter 4 Experimental Results 54 4.1 Experimental Platform 54 4.2 Encoding Evaluation 55 4.3 Experimental Results 57 4.4 Comparing with other works 60 Chapter 5 Conclusions 61 REFERENCES 62

    [1] ITU-T Rec. H.264/ISO/IEC 11496-10, “Advanced Video Coding,” Final committee Draft, Document JVTG050, March 2003.
    [2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 560-576, July 2003.
    [3] G. J. Sullivan and T. Wiegand, “Video compression – from concepts to the H.264/AVC standard,” IEEE J. J-PROC, vol. 91, pp. 18-31, Jan. 2005.
    [4] C. Fehn, “Depth-image-based-rendering (DIBR), compression and transmission for a new approach on 3D-TV,” in Proc. International Society for Optical Engineering Conf. Stereoscopic Displays and Virtual Reality Systems XI, San Jose, CA, Jan. 2004, vol. 5291, pp. 93-104.
    [5] C.P Fan, “Fast 2-Dimensional 4x4 Forward Integer Transform Implementation for H.264/AVC,” IEEE Transactions on Circuits and Systems IIL Express Briefs, vol.53, no. 3, pp. 174-177, Mar. 2006.
    [6] T. C. Wang, Y. W. Huang, H.C. Fang, and L. G. Chen, “Parallel 4x4 2D Transform and Inverse Transform Architecture for MPEG-4 AVC/H.264,” Proceeding of the International Symposium on Circuits Systems, vol.2, pp.800-803, May 2003.
    [7] B. D. Liu, J. F. Yang, W. E. Tsai, “Discrete Cross Difference Mode Detection for Fast H.264 Intra Prediction,” NCKU Tainan, Taiwan, ROC, July 2007.
    [8] I. E. Richardson, “The H.264 Advanced Video Compression Standard Second Edition,” UK: John Wiley & Sons, 2010.
    [9] G. J. Sullivan, T. Wiegand and K. P. Lim, “Joint model reference encoding methods and decoding concealment methods,” presented at the 9th JVT Meeting (JVT-I049d0), San Diego, CA, Sept. 2003.
    [10] Ralf Schafer, Thomas Wiegand and Heiko Schwarz, “The emerging H.264/AVC standard,” EBU Tehnical Review, 2003.
    [11] Y. H. Wu, C. H. Chen, “H.264 Inter Prediction Architecture Design with Rate-Distortion Optimization,” NCKU Tainan, Taiwan, ROC, July 2006.
    [12] Shuo Yao, Hai-Jun Guo, Lu Yu and Ke Zhang, “A hardware implementation for full search motion Estimation of AVS with search center prediction,” IEEE Trans. on Consumer Electronics, vol.52, no. 4, pp. 1356-1361, Nov. 2006.
    [13] Xiang Li, Chopra. R. and Hsu K. W. “Novel VLSI architecture of motion estimation for H.264 standard,” in Proc. Of IEEE Int. Conf. SOC, pp. 117-118. Sept. 2005.
    [14] R. Li, B. Zeng and M. L. Liou, “A New Three-Step search Algorithm for Block Motion Estimation,” IEEE Trans. On Circuits Systems and Video Technology, vol. 4, pp. 438-442, Aug.1994.
    [15] Lai-Man Po, “A novel four-step search algorithm for fast block motion estimation,” IEEE Trans. On Circuits Systems and Video Technology, vol. 6, pp.313-317, June 1996.
    [16] Isma¨el Daribo, Christophe Tillier, and B´eatrice Pesquet-Popescu, “Motion Vector Sharing and Bitrate Allocation for 3D Video-Plus-Depth Coding,” EURASIP Journal on Advances in Signal Processing, May 2008.
    [17] B. Kamolrat, W.A.C. Fernando, “3D motion estimation for depth image coding in 3D video coding,” IEEE Trans. on Consumer Electronics, vol. 55, no. 2, May. 2009.
    [18] A. Paul, J. F. Wang, J. F. Yang, “Adaptive search range selection for scalable video coding extension of H.264/AVC,” IEEE Tencon 2008 -2008 Region 10 conference, pp.1-4, Nov. 2008.
    [19] L. Shen, Y. Sun, and Z. Zhang, “Efficient skip mode detection for coarse grain quality scalable video coding,” IEEE Signal Processing Letters vol.17, no.10, pp. 887-890, Oct. 2010.
    [20] Joint Video Team, H2.64/AVC reference software JM 18.5: http://iphome.hhi.de/suehring/tml/download/jm18.5.zip
    [21] Y. H. Lin, J. L. Wu, “A depth information based fast mode decision algorithm for color plus depth-map 3D videos,” IEEE Trans. on Broadcasting, vol. 57, no. 2, pp. 542-550, June 2011.
    [22] T. Zhao, H. Wang, S. Kwong, C.-C. J. Kuo, “Fast mode decision based on mode adaption,” IEEE Trans. on circuits and systems for video technology, vol. 20, no. 5, pp.697-705, May 2010.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE