簡易檢索 / 詳目顯示

研究生: 陳彥錡
Chen, Yen-Chi
論文名稱: 一個具有雙方向頻率偵測並操作於0.5 Gbps至5Gbps連續頻率時脈與資料回復電路
A 0.5-to-5 Gbps Continuous Rate Clock and Data Recovery Circuit with Bi-directional Frequency Detection
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 77
中文關鍵詞: 資料時脈回復電路頻率偵測雙方向頻率偵測
外文關鍵詞: clock and data recovery, frequency acquisition, bi-directional frequency detection
相關次數: 點閱:113下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中提出了一個操作在連續頻率並具有雙方向性頻率偵測資料時脈回復電路。此電路設計的主要原理是結合旋轉式頻率偵測以及次諧波頻率偵測的技巧,來達到較寬操作頻率以及具有雙方向頻率偵測的特性,並進而實現一個時脈資料回復電路。
    驗證論文所提方法的資料時脈回復電路晶片以台灣積體電路公司所提供的0.18-µm製程進行設計。晶片核心面積為0.137 mm2。實測結果顯示,操作在輸入資料頻率為0.5 Gbps下,回復時脈的抖動均方根值以及峰對峰值分別為15.9 ps以及107.5 ps,功率消耗為121.1 mW。當操作在輸入資料頻率為4 Gbps下,回復時脈的抖動均方根值以及峰對峰值分別為17.3 ps以及92.5 ps,功率消耗為132.1 mW。

    This thesis presents a continuous rate clock and data recovery circuit with bi-directional frequency detection. In this work, rotational frequency detector and sub-harmonic tone detection technique are combined to widen the frequency range accompanied with bi-directional detection characteristic that is desirable in wide range operation. Based on the proposed frequency detection methodology, a proof-of-concept clock and data recovery circuit is implemented.
    The clock and data recovery circuit is fabricated in a TSMC 0.18-µm CMOS process. The core area is 0.137 mm2. The power consumption of this CDR circuit is 121.1 mW for a supply of 1.8V when input data rate is 0.5 Gbps. The root-mean-square (RMS) jitter of recovered clock is 15.9 ps and peak-to-peak (p-p) jitter of recovered clock is 107.5 ps. Moreover, when input data rate is 4 Gbps, the RMS jitter of recovered clock is 17.3 ps and p-p jitter of recovered clock is 92.5 ps. The power consumption is 132.1 mW.

    Chapter 1 Introduction 1 1.1 WIRELINE COMMUNICATION 1 1.2 THESIS ORGANIZATION 2 Chapter 2 Basics of Clock and Data Recovery Circuits 2.1 FIBER-OPTICS COMMUNICATION 3 2.2 BASICS OF PLL-BASED CLOCK AND DATA RECOVERY CIRCUITS 5 2.2.1 Phase Detector 6 2.2.2 Frequency Detector 9 2.2.3 PLL-Based CDR Circuit 16 2.2.4 Reference less CDR Circuit 18 2.3 PERFORMANCE METRIC OF CLOCK AND DATA RECOVERY CIRCUITS 19 2.4 WIDE RANGE CONTINUOUS RATE CLOCK AND DATA RECOVERY CIRCUITS 22 2.4.1 A 155.52Mbps to 3.125Gbps Continuous Rate Clock and Data Recovery Circuit 22 2.4.2 A 180Mbps to 3.2Gbps, Continuous Rate, Fast Locking CDR without Using External Reference Clock 24 2.4.3 A 0.5-to-2.5 Gb/s Reference-Less Half-Rate Digital CDR with Unlimited Frequency Acquisition Range and Improved Duty-Cycle Error Tolerance 25 2.4.4 A 1-16-Gb/s Wide-Range Clock/Data Recovery Circuit with a Bidirectional Frequency Detector 26 Chapter 3 Proposed Architecture of CDR and Circuit Design 28 3.1 BRIEF INTRODUCTION 28 3.2 CIRCUIT DESCRIPTION 29 3.2.1 PROPOSED FREQUENCY DETECTION METHOD 29 3.2.2 WIDE RANGE VOLTAGE CONTROLLED OSCILLATOR 32 3.2.3 PHASE DETECTOR AND VI CONVERTER 36 3.2.4 ANALOG AND DIGITAL COMPARATORS 37 3.2.5 BAND SELECTION CIRCUIT 41 3.2.6 LOOP FILTER 42 3.2.7 CURRENT MODE LOGIC 43 3.2.8 OUPUT BUFFER/INPUT MATCHING 45 3.3 PROPOSED CDR ARCHITECTURE 46 3.4 LAYOUT AND FLOOR PLAN 49 Chapter 4 Simulation and Measurement Results 52 4.1 THE SIMULATION OF WIDE RANGE VCO 52 4.1.1 Post-simulation 53 4.1.2 Testing setup and measured results 64 Chapter 5 Conclusions and Future Work 72 Bibliography 74

    [1] J. Park and W. Kim, ”An auto-ranging 50-210 Mb/s clock recovery circuit with a time-to-digital converter,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 1999, pp.350–351.
    [2] D. Dalton, K. Chai, E. Evans, M. Ferriss, D. Hitchcox, P. Murray, S. Selvanayagam, P. Shepherd, and L. Devito, “A 12.5-Mb/s to 2.7-Gb/s continuous-rate CDR with automatic frequency acquisition and data-rate read-back,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2713–2725, Dec. 2005.
    [3] R. J. Yang, K. H. Chao, and S. I. Liu, “A 200Mbps~2Gbps continuous-rate clock and data recovery circuit,” IEEE Trans. Circuits and Systems-I: Regular Papers, vol. 53, no. 4, pp.842–847, April 2006.
    [4] R. J. Yang, K. H. Chao, S. C. Hwu, C. K. Liang, and S. I. Liu, “A 155.52Mbps~3.125Gbs continuous-rate clock and data recovery circuit,” IEEE J. Solid-State Circuits, vol. 41, no.6, pp. 1380–1390, June 2006.
    [5] M. S. Hwang, S. Y. Lee, J. K. Kim, S. Kim, and D. K. Jeong, “A 180-Mb/s to 3.2-Gb/s, Continuous-Rate, Fast-Locking CDR without Using External Reference Clock,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2007, pp. 144–147.
    [6] S. -K. Lee, Y. -S. Kim, H. Ha, Y. H. Seo, H. J. Park, and J. -Y. Sim, ”A 650 Mbps to 8 Gbs referenceless CDR circuit with automatic acquisition of data rate,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 184–185.
    [7] R. Inti, W. Tin, A. Elshazly, N. Sasidhar, and P. K. Hanumolu, “A 0.5-to-2.5 Gb/s reference-less half-rate digital CDR with unlimited frequency acquisition range and improved input duty-cycle error tolerance,” IEEE J. Solid-State Circuits, vol. 46, np. 12, pp. 3150–3162, Dec. 2011.
    [8] C. L. Hsieh and S. I. Liu, “A 1-16Gb/s Wide-Range Clock/Data Recovery Circuit With a Bidirectional Frequency Detector,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 58, No. 8, Aug. 2012.
    [9] I. Jung, D. Shin, T. Kim and C. Kim, “A 140 Mb/s to 1.96 Gb/s referenceless transceiver with 7.2-µs frequency acquisition time,” IEEE Trans. on VLSI Systems, vol. 19, no. 7, pp. 1310–1315, July 2011.
    [10] Messerschmitt, D.G., “Frequency detectors for PLL acquisition in timing and carrier recovery,” IEEE Trans. Commun., vol. COM-27, pp.1288–1295, Sept., 1979.
    [11] Sam Palermo: High-Speed Links class notes. Available: http://www.ece.tamu.edu/~spalermo/
    [12] B. Razavi, Design of Integrated Circuits for Optical Communication Systems, New York: McGraw-Hill, 2003.
    [13] S. B. Anand and B. Razavi, “A CMOS clock recovery circuit for 2.5-Gb/s NRZ data,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 432¬–439, Mar. 2001.
    [14] J. D. H. Alexander, “Clock Recovery from Random Binary Data,” Electronics Letters, vol. 11, pp. 541–542, Oct. 1975.
    [15] J. Lee, K. S. Kundert and Behzad Razavi, “Analysis and Modeling of Bang-Bang Clock and Data Recovery Circuits,” IEEE J. Solid-State Circuits, vol. 39, pp. 1571–1580, Sep. 2004.
    [16] B. Stilling, “Bit rate protocol independent clock and data recovery,” Electron. Letter, vol. 36, pp. 824–825, Apr. 2000.
    [17] R. J. Yang and S. I. Liu, Doctral Dissertation of National Taiwan University.
    [18] A. X. Widmer and P. A. Franaszek, “A DC-balanced, portioned-block, 8B/10B transition code,” IBM J. Res. Devel., vol. 27, pp.440–451, May 1983.
    [19] J. Han, J. Yang, and H. M. Bae, “Analysis of a Frequency Acquisition Technique With a Stochastic Reference Clock Generator,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 59, No. 6, June 2012.
    [20] B. Abiri, et al, ”A 1-to-6 Gb/s Phase-Interpolator-Based Burst-Mode CDR in 65nm CMOS, ” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2011, pp. 154–156.
    [21] S. Kim, J. Park, Y. Pu and K. Y. Lee, “A low power, wide range VCO with automatic amplitude calibration loop,” in IEEE 8th International Conference on ASIC, 2009, pp. 455-457.
    [22] Wen-Rong Yang and Wei-Yang Jiang, “A dual-path three-stage VCO with wide tuning range,” in Proceedings of the 7th IEEE Conference on ASIC, Oct. 2007, pp. 542–544.
    [23] M. K. Raja, D. L. Yan, A. B. Ajjikuttira, “A 1.4-psec jitter 2.5-Gb/s CDR with wide acquisition range in 0.18-µm CMOS,” in Proc. 33rd European Solid State Circuits Conference, Sep. 2007, pp. 524–527.
    [24] H. H. Chang, J. W. Lin and S. I. Liu, “A wide-range and fixed latency of one clock cycle delay-locked loop,” in Proc. IEEE International Symposium on Circuits and Systems, May 2002, pp. 675–678.
    [25] John G. Maneatis, “Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques,” IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1723¬–1732, Nov. 1996.
    [26] 劉深淵, 楊清淵, “鎖相迴路”, 滄海書局, 2006.
    [27] M. M. Green and U. Singh, “Design of CMOS CML circuits for high-speed broadband communications,” in Proc. Int. Symp. Circuits Syst., 2002, pp. 204–207.
    [28] K. S. Ha and L. S. Kim, “A 3.2-Gb/s transceiver with a quarter-rate linear phase detector reducing the phase offset,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2008, pp. 217–220.
    [29] J. Savoj and B. Razavi, “A 10-Gb/s CMOS clock and data recovery circuit with a half-rate linear phase detector,” IEEE J. Solid-State Circuits, vol. 36, no. 5, pp. 761¬–767, May. 2001.
    [30] R. J. Yang, S. P. Chen, and S. I. Liu, “A 3.125 Gb/s clock and data recovery circuit for the 10-Gbase-LX4 Ethernet,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1356¬–1360, Aug. 2004.
    [31] J. Cho, M. Green, A. Momtaz, K. Vakilian, D. Chung, K. –C. Jen, M. Caresosa, X. Wang, W. G. Tan, Y. Cai, I. Fujimori, and A. Hairapetian, “OC-192 transmitter and reciver in standard 0.18-µm CMOS,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1768¬–1780, Dec. 2002.
    [32] B. Razavi, “Chanllenges in the design of high-speed clock-and-data recovery circuits,” IEEE Commun. Mag., vol. 40, no. 8, pp. 94-101, Aug. 2002.

    無法下載圖示 校內:2019-07-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE