| 研究生: |
汪予恩 Wang, Yu-En |
|---|---|
| 論文名稱: |
陸上光達及海上測風塔之風速量測資料分析 Analysis of wind data obtained from offshore meteorological mast and onshore Windcube LIDAR |
| 指導教授: |
吳毓庭
Wu, Yu-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 離岸測風塔 、指數定律 、資料重建方法 、極端風速推測 |
| 外文關鍵詞: | Offshore mast, Power law, Measure-Correlate-Predict, Extreme wind speed |
| 相關次數: | 點閱:48 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究結合離岸測風塔之氣象資料,固定式光達(Lidar)的現地量測,與岸上氣象站之風力資料,進行比較驗證及交叉分析,進而建立風剖面分佈。此研究以離岸測風塔之十分鐘平均風速資料,進行每月的指數定律的次方項分析和韋伯分佈常數計算。在多數研究一個特定區域的風況中,常被認定或當作一個固定且大於零的常數。然而在此研究發現,指數並不是恆為正,並隨著風速大小有不同的變化。當風速越快,韋伯分佈常數越大。
本研究亦使用資料重建方法(MCP),以岸上氣象站之風力資料重建離岸測風塔之風力資料,再以不同方式取樣,推算極端風速,分析該地風場的情況。在三種的海上測風塔之風速資料與岸上氣象站之風速資料的回歸分析中,以二次方法做回歸分析,擁有較佳的決定係數,因此本研究採用二次方法進行資料重建。用不同取樣方式:每小時、每日、每月和每年的最大風速,帶入萊利、韋伯、常態、極值、逆高斯和廣義柏拉圖分佈,所推估的極端風速值,不盡相同。原始離岸測風塔之風力資料與重建後之風力資料,在相同取樣方式,所推出的極端風速值大略相同。重建後之風力資料所推出的極端風速值,隨著取樣點減少而增加。
In this study, offshore wind data from Offshore meteorological measurements, Lidar measurement wind data and onshore wind data from weather station were used to analyze wind conditions and wind profile exponents. The 10-min mean wind speed data for offshore were used to analyze the shear exponent of the power law and the parameters of Weibull distribution each month. The shear exponent values in the power law were considered as a fixed constant in a measurement site before. However, the shear exponent values derived from this study are not always positive and vary with wind speeds.
The MCP (Measure-Correlate-Predict) methods have been used to reconstruct long-term offshore wind data from wind data collected at Wuqi weather station from Aug 1999 to Apr 2017. The quadratic regression method has largest correlation coefficient among the three regression methods for offshore wind speed data and onshore weather station, and was used in this study. The data were conducted with different sampling methods and then used for estimates of wind speed associated with return periods of 1, 5, 50 years. The maxima of hourly, daily, monthly and yearly wind data were used to fit statistical probability distributions such as Rayleigh, Weibull, normal, generalized extreme value, inverse Gaussian, and generalized Pareto distributions. The estimates of wind speed for the return periods of 5 and 50 years based on original wind speed data and that based on wind speed data reconstructed using the MCP method have similar results in the same sampling methods with the extraction method of hourly maximum wind speeds (HMAX) and daily maximum wind speeds (DMAX). The estimates of wind speeds for the return periods of 5 and 50 years based on wind speed data reconstructed using the MCP method increase with the decreasing of sampling data.
[1] “Paris Agreement,” vol. 27, no. June 1987, pp. 1–38, 2015.
[2] M.Holt, R. J.Campbell, andM. B.Nikitin, “Fukushima Nuclear Disaster,” 2012.
[3] Y.Kim, M.Kim, andW.Kim, “Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy,” Energy Policy, vol. 61, pp. 822–828, 2013.
[4] M.Siegrist, B.Sütterlin, andC.Keller, “Why have some people changed their attitudes toward nuclear power after the accident in Fukushima ?,” Energy Policy, vol. 69, pp. 356–363, 2014.
[5] World Nuclear Association, “Nuclear Power in Germany.” [Online]. Available: http://www.world-nuclear.org/information-library/country-profiles/countries-g-n/germany.aspx.
[6] World Nuclear Association, “Nuclear Power in Belgium.” [Online]. Available: http://www.world-nuclear.org/information-library/country-profiles/countries-a-f/belgium.aspx.
[7] World Nuclear Association, “Nuclear Power in Switzerland.” [Online]. Available: http://www.world-nuclear.org/information-library/country-profiles/countries-o-s/switzerland.aspx.
[8] “Greenhouse Gas Reduction and Management Act,” no. 10400077011, pp. 1–11, 2015.
[9] I.Tsai, “2025 Nuclear-free homeland project,” 2011. [Online]. Available: https://www.facebook.com/notes/蔡英文-tsai-ing-wen/蔡英文2025年達成非核家園/10150117740811547/.
[10] BUREAU OF ENERGY, “ENERGY STATISTICS HANDBOOK 2016.”
[11] D.Arent, P.Sullivan, D.Heimiller, A.Lopez, K.Eurek, J.Badger, H. E.Jorgensen, M.Kelly, L.Clarke, andP.Luckow, “Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios,” no. October, 2012.
[12] C.-C.Liu, C.-D.Yue, Y.-T.Wu, C.-Y.Hsuan, C.-C.Tu, andT.-H.Lin, “Simulation and Comparison of Offshore and Nearshore Wind Measurement Data,” 2017台灣風能協會會員大會暨學術研討會與科技部成果發表會, 2017.
[13] T. J.Chang, C. L.Chen, Y. L.Tu, H.TeYeh, andY. T.Wu, “Evaluation of the climate change impact on wind resources in Taiwan Strait,” Energy Convers. Manag., vol. 95, pp. 435–445, 2015.
[14] 千架海陸風力機資訊整合平台, “http://www.twtpo.org.tw/.” .
[15] Central Weather Bureau, “http://www.cwb.gov.tw/V7/knowledge/encyclopedia/ty006.htm.” .
[16] 中央災害應變中心, “尼伯特颱風災害應變處置報告第 7 報(結報),” 2016.
[17] 農委會, “105年7月尼伯特颱風農業災情報告,” 2016.
[18] 中央災害應變中心, “莫蘭蒂颱風災害應變處置報告第 5 報(結報),” 2016.
[19] 農委會, “105年9月莫蘭蒂颱風農業災情報告,” 2016.
[20] 中央災害應變中心, “梅姬颱風災害應變處置報告第 5 報(結報),” 2016.
[21] 農委會, “105年9月梅姬颱風農業災情報告,” 2016.
[22] B.Peeters, J.Maeck, andG.DeRoeck, “Vibration-based damage detection in civil engineering: excitation sources and temperature effects,” Smart Mater. Struct., vol. 10, no. 3, p. 518, 2001.
[23] L. F.Whicker andL. F.Fehlner, “Free-stream characteristics of a family of low-aspect ratio, all-movable control surfaces for application to ship design,” no. December, 1958.
[24] E. L.Petersen andI.Troen, “Wind conditions and resource assessment,” Wiley Interdiscip. Rev. Energy Environ., vol. 1, no. 2, pp. 206–217, 2012.
[25] S. A.Akdaǧ andA.Dinler, “A new method to estimate Weibull parameters for wind energy applications,” Energy Convers. Manag., vol. 50, no. 7, pp. 1761–1766, 2009.
[26] O. A.Jaramillo andM. A.Borja, “Wind speed analysis in La Ventosa, Mexico: A bimodal probability distribution case,” Renew. Energy, vol. 29, no. 10, pp. 1613–1630, 2004.
[27] S.Mathew, K. P.Pandey, andA.Kumar.V, “Analysis of wind regimes for energy estimation,” Renew. Energy, vol. 25, no. 3, pp. 381–399, 2002.
[28] K.Ko, K.Kim, andJ.Huh, “Variations of wind speed in time on Jeju Island, Korea,” Energy, vol. 35, no. 8, pp. 3381–3387, 2010.
[29] J.Wang, S.Qin, S.Jin, andJ.Wu, “Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources,” Renew. Sustain. Energy Rev., vol. 42, pp. 26–42, 2015.
[30] Y.-C.Liao, “Verification between Theoretical Distribution and Observed Data of Wind Speed Related to Wind Turbine Design,” National Taiwan University, 2014.
[31] H.Lettau, “A Re-examination of the ‘Leipzig Wind Profile’ Considering some Relations between Wind and Turbulence in the Frictional Layer,” 1950.
[32] D. J.Carson andF. B.Smith, “The Leipzig wind profile and the boundary layer wind-stress relationship,” Q. J. R. Meteorol. Soc., vol. 99, no. 419, pp. 171–177, 1973.
[33] E.Binopoulos, M.Koulouvari, D.Foussekis, andF.Mouzakis, “EXPERIMENTAL INVESTIGATION OF COMPLEX TERRAIN BOUNDARY LAYER WITH A 100mMAST,” pp. 19–22.
[34] A.Peña, C. B.Hasager, S.-E. S.-E.Gryning, M.Courtney, I.Antoniou, T.Mikkelsen, andA.Peña, “Offshore wind profiling using light detection and ranging measurements,” Wind Energy, vol. 12, no. 2, pp. 105–124, 2009.
[35] R.Floors, E.Batchvarova, S.-E.Gryning, A. N.Hahmann, A.Peña, andT.Mikkelsen, “Atmospheric boundary layer wind profile at a flat coastal site – wind speed lidar measurements and mesoscale modeling results,” no. April 2010, pp. 155–159, 2011.
[36] A.Peña, R.Floors, andS.-E.Gryning, “The Høvsøre tall wind profile experiment – a description of wind profile observations in the atmospheric boundary layer,” pp. 1–30, 2013.
[37] C.Draxl, A. N.Hahmann, A.Peña, andG.Giebel, “Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes,” Wind Energy, vol. 17, no. April 2013, pp. 657–669, 2014.
[38] H.Wang, R. J.Barthelmie, A.Clifton, andS. C.Pryor, “Wind Measurements from Arc Scans with Doppler Wind Lidar,” pp. 2024–2040, 2015.
[39] V.Bezrukovs, A.Zacepins, V.Bezrukovs, andV.Komasilovs, “Comparison of methods for evaluation of wind turbine power production by the results of wind shear measurements on the Baltic shore of Latvia,” Renew. Energy, vol. 96, pp. 765–774, 2016.
[40] E.Simiu, “Design of buildings for wind : a guide for ASCE 7-10 standard users and designers of special structures,” no. 1, pp. 117–136.
[41] American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures, vol. 552. American Society of Civil Elilgineers, 2013.
[42] National Research Council Canada, “National Building Code of Canada 2015.” [Online]. Available: https://www.nrc-cnrc.gc.ca/eng/publications/codes_centre/2015_national_building_code.html.
[43] “AIJ Recommendations for Loads on Buildings,” vol. 3, no. 1, Architectural Institute of Japan, 2005, pp. 1–56.
[44] 建築物耐風設計規範及解說. 2015.
[45] P. S.Veers, T. D.Ashwill, H. J.Sutherland, D. L.Laird, D. W.Lobitz, D. A.Griffin, J. F.Mandell, W. D.M??sial, K.Jackson, M.Zuteck, A.Miravete, S. W.Tsai, andJ. L.Richmond, “Trends in the design, manufacture and evaluation of wind turbine blades,” Wind Energy, vol. 6, no. 3, pp. 245–259, 2003.
[46] C.Kong, J.Bang, andY.Sugiyama, “Structural investigation of composite wind turbine blade considering various load cases and fatigue life,” Energy, vol. 30, no. 11–12 SPEC. ISS., pp. 2101–2114, 2005.
[47] C. C.Ciang, J.-R.Lee, andH.-J.Bang, “Structural health monitoring for a wind turbine system: a review of damage detection methods,” Meas. Sci. Technol., vol. 19, no. 12, p. 122001, 2008.
[48] J.-S.Chou andW.-T.Tu, “Failure analysis and risk management of a collapsed large wind turbine tower,” Eng. Fail. Anal., vol. 18, no. 1, pp. 295–313, 2011.
[49] C. G.Justus, K.Mani, andA. S.Mikhail, “Interannual and Month-to Month Variations of Wind Speed.,” Journal of Applied Meteorology, vol. 18. pp. 913–920, 1979.
[50] A.Derrick, “Development of the Measure-correlate-predict strategy for site assessment.”
[51] A.Romo Perea, J.Amezcua, andO.Probst, “Validation of three new measure-correlate-predict models for the long-term prospection of the wind resource,” J. Renew. Sustain. Energy, vol. 3, no. 2, 2011.
[52] G.Xydis, “Wind-direction analysis in coastal mountainous sites: An experimental study within the Gulf of Corinth, Greece,” Energy Convers. Manag., vol. 64, pp. 157–169, 2012.
[53] J. A.Carta, S.Velázquez, andJ. M.Matías, “Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site,” Energy Convers. Manag., vol. 52, no. 2, pp. 1137–1149, 2011.
[54] J. A.Carta, S.Velázquez, andP.Cabrera, “A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site,” Renew. Sustain. Energy Rev., vol. 27, pp. 362–400, 2013.
[55] T.Ishihara andA.Yamaguchi, “Prediction of the extreme wind speed in the mixed climate region by using Monte Carlo simulation and measure-correlate-predict method,” Wind Energy, vol. 17, no. April 2013, pp. 657–669, 2014.
[56] S. M.Weekes, A. S.Tomlin, S. B.Vosper, A. K.Skea, M. L.Gallani, andJ. J.Standen, “Long-term wind resource assessment for small and medium-scale turbines using operational forecast data and measure-correlate-predict,” Renew. Energy, vol. 81, pp. 760–769, 2015.
[57] K.-Y.Oh, J.-Y.Kim, J.-K.Lee, M.-S.Ryu, andJ.-S.Lee, “An assessment of wind energy potential at the demonstration offshore wind farm in Korea,” Energy, vol. 46, no. 1, pp. 555–563, 2012.
[58] B. H.Lee, D. J.Ahn, H. G.Kim, andY. C.Ha, “An estimation of the extreme wind speed using the Korea wind map,” Renew. Energy, vol. 42, pp. 4–10, 2012.
[59] D.Kang, K.Ko, andJ.Huh, “Determination of extreme wind values using the Gumbel distribution,” Energy, vol. 86, pp. 51–58, 2015.
[60] K.Ko, D.Kang, andJ.Huh, “An Estimation of Extreme Wind Speeds on Jeju Island Using Measure-Correlate-Predict Method,” Wind Eng., vol. 39, no. 3, pp. 261–270, 2015.
[61] E.Simiu, Wind effects on structures : fundamentals and applications to design. 1996.
[62] 4C Offshore, “Global Offshore Wind Speeds Rankings.” [Online]. Available: http://www.4coffshore.com/windfarms/windspeeds.aspx.
[63] “Wuqi District.” [Online]. Available: https://zh.wikipedia.org/wiki/梧棲區.
[64] Central Weather Bureau, “Wuqi Weather Station.” [Online]. Available: http://www.cwb.gov.tw/V7/eservice/docs/overview/organ/stations/46777/index.htm.
[65] International Electrotechnical Commission, “IEC 61400-1 Wind turbine generator systems - Part 1: Design Requirements,” Iec 61400-1, vol. 2005, p. 85, 2005.
[66] ADOLF THIES GmbH & Co. KG, “Instruction for Use Wind Transmitter „First Class“ Advanced.”
[67] ADOLF THIES GmbH & Co. KG, “Instruction for Use Wind Direction Transmitter „First Class“.”
[68] “Changhua Coastal Industrial Park.” [Online]. Available: https://en.wikipedia.org/wiki/Changhua_Coastal_Industrial_Park.
[69] INTELLECTUAL PROPERTY OFFICE, “https://www.tipo.gov.tw/ct.asp?xItem=365289&ctNode=7192&mp=1.” [Online]. Available: https://www.tipo.gov.tw/ct.asp?xItem=365289&ctNode=7192&mp=1.
[70] Automotive Research & Testing Center, “About ARTC.” [Online]. Available: https://www.artc.org.tw/chinese/05_about/01_01list.aspx?pid=4.
[71] A.Peña, C. B.Hasager, M.Badger, R. J.Barthelmie, F.Bingöl, J.-P.Cariou, S.Emeis, S. T.Frandsen, M.Harris, I.Karagali, S. E.Larsen, J.Mann, T.Mikkelsen, M.Pitter, S.Pryor, A.Sathe, D.Schlipf, C.Slinger, andR.Wagner, Remote Sensing for Wind Energy DTU Wind Energy E-Report Remote Sensing for Wind Energy, vol. E-Report-0. 2015.
[72] L.Bu, Z.Qiu, H.Gao, X.Zhu, andJ.Liu, “All‐fiber pulse coherent Doppler LIDAR and its validations,” Opt. Eng., vol. 54, no. 12, p. 123103, 2015.
[73] T. K.Mikkelsen, “Lidar-based Research and Innovation at DTU Wind Energy – a Review,” J. Phys. Conf. Ser., vol. 524, no. 1, p. 12007, 2014.
[74] P. J. M.Clive, “Lidar resource assessment wind power applications: the state of the art,” Spie, vol. 7111, pp. 711107-711107–10, 2008.
[75] A.Peña, S. E.Gryning, andC. B.Hasager, “Comparing mixing-length models of the diabatic wind profile over homogeneous terrain,” Theor. Appl. Climatol., vol. 100, no. 3, pp. 325–335, 2010.
[76] M.Courtney, R.Wagner, andP.Lindelöw, “Testing and comparison of lidars for profile and turbulence measurements in wind energy,” IOP Conf. Ser. Earth Environ. Sci., vol. 1, p. 12021, 2008.
[77] C. B.Hasager, D.Stein, M.Courtney, A.Peña, T.Mikkelsen, M.Stickland, andA.Oldroyd, “Hub height ocean winds over the north sea observed by the NORSEWInD lidar array: Measuring techniques, quality control and data management,” Remote Sens., vol. 5, no. 9, pp. 4280–4303, 2013.
[78] J. F.Newman, T. A.Bonin, P. M.Klein, S.Wharton, andR. K.Newsom, “Testing and validation of multi-lidar scanning strategies for wind energy applications,” Wind Energy, vol. 17, no. April 2013, pp. 657–669, 2016.
[79] A.Sathe, J.Mann, J.Gottschall, andM. S.Courtney, “Can wind lidars measure turbulence?,” J. Atmos. Ocean. Technol., vol. 28, no. 7, pp. 853–868, 2011.
[80] A.Sathe andJ.Mann, “Measurement of turbulence spectra using scanning pulsed wind lidars,” J. Geophys. Res. Atmos., vol. 117, no. 1, pp. 1–11, 2012.
[81] G. V.Iungo, Y. T.Wu, andF.Porté-Agel, “Field measurements of wind turbine wakes with lidars,” J. Atmos. Ocean. Technol., vol. 30, no. 2, pp. 274–287, 2013.
[82] J. K.Lundquist, M. J.Churchfield, S.Lee, andA.Clifton, “Quantifying error of lidar and sodar doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics,” Atmos. Meas. Tech., vol. 8, no. 2, pp. 907–920, 2015.
[83] J. F.Newman, P. M.Klein, S.Wharton, A.Sathe, T. A.Bonin, P. B.Chilson, andA.Muschinski, “Evaluation of three lidar scanning strategies for turbulence measurements,” Atmos. Meas. Tech., vol. 9, no. 5, pp. 1993–2013, 2016.
[84] M.Wächter, A.Rettenmeier, M.Kühn, andJ.Peinke, “Wind velocity measurements using a pulsed LIDAR system: first results,” IOP Conf. Ser. Earth Environ. Sci., vol. 1, p. 12066, 2008.
[85] Leosphere, “WINDCUBE®v2 Manual,” 2013.
[86] M. L.Aitken, M. E.Rhodes, andJ. K.Lundquist, “Performance of a wind-profiling lidar in the region of wind turbine rotor disks,” J. Atmos. Ocean. Technol., vol. 29, no. 3, pp. 347–355, 2012.
[87] M.Wächter, A.Rettenmeier, M.Kühn, andJ.Peinke, “Characterization of short time fluctuations in atmospheric wind speeds by LIDAR measurements,” Meteorol. Zeitschrift, vol. 18, no. 3, pp. 277–280, 2009.
[88] M.Hölling, J.Peinke, andS.Ivanell, Wind Energy – Impact of Turbulence. 2012.
[89] Y. T.Wu andF.Porté-Agel, “Atmospheric turbulence effects on wind-turbine wakes: An LES study,” Energies, vol. 5, no. 12, pp. 5340–5362, 2012.
[90] B.Bailey, P.Beaucage, D.Bernadett, andM.Brower, Wind resource assessment: a practical guide to developing a wind project. 2012.
[91] H. W.Tieleman, “Strong wind observations in the atmospheric surface layer,” J. Wind Eng. Ind. Aerodyn., vol. 96, no. 1, pp. 41–77, 2008.
[92] A. G.Davenport, “Rationale for Determining Design Wind Velocities,” ASCE J. Struct. Div., vol. 86, no. 5, pp. 39–6810, 1960.
[93] H. W.Tieleman, “Roughness estimation for wind-load simulation experiments,” J. Wind Eng. Ind. Aerodyn., vol. 91, no. 9, pp. 1163–1173, 2003.
[94] World Meteorological Organization, “GUIDELINES FOR CONVERTING BETWEEN VARIOUS WIND AVERAGING PERIODS IN TROPICAL CYCLONE CONDITIONS,” no. October, 2008.
[95] L.Landberg, Wind Energy Meteorology for Wind Energy. .
[96] J. C.Fuhrer, G. R.Moore, andS. D.Schuh, “Estimating the linear-quadratic inventory model maximum likelihood versus generalized method of moments,” J. Monet. Econ., vol. 35, no. 1, pp. 115–157, 1995.
[97] J. M.Ling, “The Parameters Estimation for the Probability Distribution of Yearly Wind Speed in Tainan / Penghu,” 2009.
[98] I. Y. F.Lun andJ. C.Lam, “A study of Weibull parameters using long-term wind observations,” Renew. Energy, vol. 20, no. 2, pp. 145–153, 2000.
[99] J.V.Seguro andT. W.Lambert, “Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis,” J. Wind Eng. Ind. Aerodyn., vol. 85, no. 1, pp. 75–84, 2000.
[100] M. J. M.Stevens andP. T.Smulders, “ESTIMATION OF THE PARAMETERS OF THE WEIBULL WIND SPEED DISTRIBUTION FOR WIND ENERGY UTILIZATION PURPOSES.,” Wind Eng., vol. 3, no. 2, 1979.
[101] D.Indhumathy, C.VSeshaiah, andK.Sukkiramathi, “Estimation of Weibull Parameters for Wind speed calculation at Kanyakumari in India,” Int. J. Innov. Res. Sci., vol. 3, no. 1, pp. 8340–8345, 2014.
[102] T. J.Chang, Y. T.Wu, H. Y.Hsu, C. R.Chu, andC. M.Liao, “Assessment of wind characteristics and wind turbine characteristics in Taiwan,” Renew. Energy, vol. 28, no. 6, pp. 851–871, 2003.
[103] C.Cunnane, “Unbiased plotting positions — A review,” J. Hydrol., vol. 37, no. 3, pp. 205–222, 1978.
[104] J.Aldrich, “R.A. Fisher and the making of maximum likelihood 1912-1922,” Stat. Sci., vol. 12, no. 3, pp. 162–176, 1997.
[105] H.Liu, Wind engineering : a handbook for structural engineers. 1991.
[106] “Coefficient of Determination definition.” [Online]. Available: http://stattrek.com/statistics/dictionary.aspx?definition=coefficient_of_determination.
[107] M.Roth, “Review of atmospheric turbulence over cites,” Q. J. R. Meteorol. Soc., 2000.
[108] 莊月璇 and朱佳仁, “台灣地區風速機率分佈之研究,” National Central University, 2001.
校內:2022-12-20公開