| 研究生: |
張雅涵 Chang, Ya-Han |
|---|---|
| 論文名稱: |
口腔癌前病變相關纖維母細胞的外胞體對癌進程的影響 Role of Exosomes from Oral Precancer Associated Fibroblasts in Oral Cancer Progression |
| 指導教授: |
陳玉玲
Chen, Yuh-Ling 王東堯 Wang, Tung-Yiu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 外胞體 、Galectin-1蛋白 、口腔癌前病變之纖維母細胞 |
| 外文關鍵詞: | exosomes, Galectin-1, pre-cancer associated fibroblasts |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
口腔癌在台灣的發生率與死亡率逐年上升,目前是台灣男性十大癌症死亡率排名第四位。腫瘤的組成除了癌細胞外還含有許多腫瘤微環境相關細胞皆對腫瘤進程有影響,先前研究已知腫瘤相關的纖維母細胞會影響癌細胞的幹細胞特性、移行、與轉移,我們實驗室也證實腫瘤相關纖維母細胞的Galectin-1表現量增加會促進口腔癌轉移。口腔癌發生的過程中經常伴隨癌前病變的產生,而口腔癌前病變中的纖維母細胞是否參與癌變機制及其如何調控癌變進程則目前甚少研究。外胞體(exosome)是奈米大小的細胞衍生小泡,帶有蛋白質,RNA,線粒體DNA和大片段的DNA,在腫瘤微環境中扮演重要訊息溝通的角色,但外胞體在癌前病變過程的探討極為有限,而galectin-1是否透過外胞體影響癌轉移也未知。在本研究,我們分離與培養來自相同口腔癌病患正常、癌前病變、及癌組織中的纖維母細胞,發現癌前病變相關纖維母細胞比正常的牙齦纖維母細胞生長速度較快且較為活化,我們也發現癌前病變纖維母細胞的條件培養基(conditioned media)有較強的口腔癌細胞移行的誘導功能,純化各種纖維母細胞所分泌出的外胞體在電子顯微鏡下觀察,發現癌前病變及癌相關纖維母細胞的外胞體體積較大,而在癌相關纖維母細胞中的Galectin-1含量較多,且Galectin-1會藉由外胞體的包覆而進入到口腔癌細胞中,進而影響口腔癌細胞移行的能力。綜合以上結果,癌前病變以及癌相關纖維母細胞所釋放至微環境的因子以及外胞體傳送的機制在口腔癌的進程中扮演著重要的角色,透過了解口腔癌癌前病變微環境對口腔癌的影響,期望未來可以做為口腔癌診斷及治療標靶之參考。
In our previous study, we isolated and cultured several fibroblast sets from oral cancer patients’ normal, pre-cancer, cancer tissues. We found proliferation rate and α-SMA expression level, a marker of activated fibroblasts, were higher in pre-cancer associated fibroblasts than in normal fibroblasts. The conditioned media from pre-cancer associated fibroblasts have higher cancer cell migration promoting abilities than those from normal fibroblasts. Moreover, we purified exosomes from the conditioned media of fibroblasts and found the size of exosomes derived from cancer- or precancer-associated fibroblasts is larger than that from normal fibroblasts. We also found that the levels of galectin-1 in the exosomes from cancer-associated fibroblasts are higher, and galectin-1 can be package by exosomes and delivered into oral cancer cells, thereby affecting the cell function. Taken together, pre-cancer-associated fibroblasts can increase cancer cell migration. Exosomes from pre-cancer- and cancer-associated fibroblasts are very important in oral cancer progression. Galectin-1 can be packaged and delivered by exosomes of cancer-associated fibroblasts to regulate oral cancer development. Through understanding of the impact of oral precancerous fibroblasts in oral cancer microenvironment, we hope new prognosis markers and therapeutic targets in more early stage of oral cancer could be discovered.
Key Words: exosomes、Galectin-1、pre-cancer associated fibroblasts
Angeli, F., Koumakis, G., Chen, M.-C., Kumar, S., and Delinassios, J.G. (2009). Role of stromal fibroblasts in cancer: promoting or impeding? Tumor Biology 30, 109-120.
Bang, C., Batkai, S., Dangwal, S., Gupta, S.K., Foinquinos, A., Holzmann, A., Just, A., Remke, J., Zimmer, K., and Zeug, A. (2014). Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. The Journal of clinical investigation 124, 2136.
Boelens, M.C., Wu, T.J., Nabet, B.Y., Xu, B., Qiu, Y., Yoon, T., Azzam, D.J., Twyman-Saint Victor, C., Wiemann, B.Z., Ishwaran, H., et al. (2014). Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159, 499-513.
Chatterjee R Fau - Gupta, B., Gupta B Fau - Bose, S., and Bose, S. Oral Screening for Pre-cancerous Lesions Among Areca-nut Chewing Population from Rural India. LID - 10.3290/j.ohpd.a34052 [doi].
Chen, W.-J., Ho, C.-C., Chang, Y.-L., Chen, H.-Y., Lin, C.-A., Ling, T.-Y., Yu, S.-L., Yuan, S.-S., Louisa Chen, Y.-J., Lin, C.-Y., et al. (2014). Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun 5.
Chiang, W.-F., Liu, S.-Y., Fang, L.-Y., Lin, C.-N., Wu, M.-H., Chen, Y.-C., Chen, Y.-L., and Jin, Y.-T. (2008). Overexpression of galectin-1 at the tumor invasion front is associated with poor prognosis in early-stage oral squamous cell carcinoma. Oral oncology 44, 325-334.
Cirri, P., and Chiarugi, P. (2012). Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev 31, 195-208.
Comito, G., Giannoni, E., Segura, C.P., Barcellos-de-Souza, P., Raspollini, M.R., Baroni, G., Lanciotti, M., Serni, S., and Chiarugi, P. (2014). Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 33, 2423-2431.
Denzer, K., Kleijmeer, M.J., Heijnen, H., Stoorvogel, W., and Geuze, H.J. (2000). Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. Journal of cell science 113, 3365-3374.
Diaconu, M., Kothe, U., Schlünzen, F., Fischer, N., Harms, J.M., Tonevitsky, A.G., Stark, H., Rodnina, M.V., and Wahl, M.C. (2005). Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 121, 991-1004.
Elola, M.T., Chiesa Me Fau - Alberti, A.F., Alberti Af Fau - Mordoh, J., Mordoh J Fau - Fink, N.E., and Fink, N.E. Galectin-1 receptors in different cell types.
Fabbri, M., Paone, A., Calore, F., Galli, R., Gaudio, E., Santhanam, R., Lovat, F., Fadda, P., Mao, C., and Nuovo, G.J. (2012). MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proceedings of the National Academy of Sciences 109, E2110-E2116.
Fiaschi, T., Marini, A., Giannoni, E., Taddei, M.L., Gandellini, P., De Donatis, A., Lanciotti, M., Serni, S., Cirri, P., and Chiarugi, P. (2012). Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer research 72, 5130-5140.
Fischer, C., Sanchez-Ruderisch, H., Welzel, M., Wiedenmann, B., Sakai, T., André, S., Gabius, H.-J., Khachigian, L., Detjen, K.M., and Rosewicz, S. (2005). Galectin-1 interacts with the α5β1 fibronectin receptor to restrict carcinoma cell growth via induction of p21 and p27. Journal of Biological Chemistry 280, 37266-37277.
Ganly, I., Soutar Ds Fau - Kaye, S.B., and Kaye, S.B. Current role of gene therapy in head and neck cancer.
Giannoni, E., Bianchini, F., Masieri, L., Serni, S., Torre, E., Calorini, L., and Chiarugi, P. (2010). Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer research 70, 6945-6956.
Haider, S., Merchant, A., Fikree, F., and Rahbar, M. (2000). Clinical and functional staging of oral submucous fibrosis. British Journal of Oral and Maxillofacial Surgery 38, 12-15.
Hinz, B., Celetta, G., Tomasek, J.J., Gabbiani, G., and Chaponnier, C. (2001). Alpha-Smooth Muscle Actin Expression Upregulates Fibroblast Contractile Activity. Molecular Biology of the Cell 12, 2730-2741.
Hsieh, S., Ying, N., Wu, M., Chiang, W., Hsu, C., Wong, T.-Y., Jin, Y., Hong, T., and Chen, Y. (2008). Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene 27, 3746-3753.
Joyce, J.A., and Pollard, J.W. (2009). Microenvironmental regulation of metastasis. Nature Reviews Cancer 9, 239-252.
Kalluri, R., and Zeisberg, M. (2006). Fibroblasts in cancer. Nat Rev Cancer 6, 392-401.
Korkaya, H., Liu, S., and Wicha, M.S. (2011). Breast cancer stem cells, cytokine networks, and the tumor microenvironment. The Journal of clinical investigation 121, 3804-3809.
Leffler, H., Carlsson, S., Hedlund, M., Qian, Y., and Poirier, F. (2002). Introduction to galectins. Glycoconjugate journal 19, 433-440.
Leoni, G., Neumann, P.A., Kamaly, N., Quiros, M., Nishio, H., Jones, H.R., Sumagin, R., Hilgarth, R.S., Alam, A., Fredman, G., et al. (2015). Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. The Journal of clinical investigation 125, 1215-1227.
Luga, V., Zhang, L., Viloria-Petit, Alicia M., Ogunjimi, Abiodun A., Inanlou, Mohammad R., Chiu, E., Buchanan, M., Hosein, Abdel N., Basik, M., and Wrana, Jeffrey L. (2012). Exosomes Mediate Stromal Mobilization of Autocrine Wnt-PCP Signaling in Breast Cancer Cell Migration. Cell 151, 1542-1556.
Mitchell, J.P., Court, J., Mason, M.D., Tabi, Z., and Clayton, A. (2008). Increased exosome production from tumour cell cultures using the Integra CELLine Culture System. Journal of immunological methods 335, 98-105.
Ohannesian, D.W., Lotan, D., and Lotan, R. (1994). Concomitant increases in galectin-1 and its glycoconjugate ligands (carcinoembryonic antigen, lamp-1, and lamp-2) in cultured human colon carcinoma cells by sodium butyrate. Cancer research 54, 5992-6000.
Peinado, H., Alečković, M., Lavotshkin, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G., Hergueta-Redondo, M., Williams, C., García-Santos, G., and Ghajar, C.M. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature medicine 18, 883-891.
Petti, S. (2003). Pooled estimate of world leukoplakia prevalence: a systematic review. Oral oncology 39, 770-780.
Phillips, B., Knisley, K., Weitlauf, K.D., Dorsett, J., Lee, V., and Weitlauf, H. (1996). Differential expression of two beta-galactoside-binding lectins in the reproductive tracts of pregnant mice. Biology of reproduction 55, 548-558.
Seelenmeyer, C., Stegmayer, C., and Nickel, W. (2008). Unconventional secretion of fibroblast growth factor 2 and galectin-1 does not require shedding of plasma membrane-derived vesicles. FEBS letters 582, 1362-1368.
Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brügger, B., and Simons, M. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244-1247.
Upreti, M., Jyoti, A., and Sethi, P. (2013). Tumor microenvironment and nanotherapeutics. Translational cancer research 2, 309.
van den Brûle, F., Califice, S., and Castronovo, V. (2002). Expression of galectins in cancer: A critical review. Glycoconj J 19, 537-542.
van den Brûle, F., Califice, S., Garnier, F., Fernandez, P.L., Berchuck, A., and Castronovo, V. (2003). Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin. Laboratory investigation 83, 377-386.
Webber, J., Steadman, R., Mason, M.D., Tabi, Z., and Clayton, A. (2010). Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer research 70, 9621-9630.
Wollina, U., Verma, S.B., Ali, F.M., and Patil, K. (2015). Oral submucous fibrosis: an update. Clinical, Cosmetic and Investigational Dermatology 8, 193-204.
校內:2020-08-24公開