簡易檢索 / 詳目顯示

研究生: 李嘉銓
Li, Chia-Chuan
論文名稱: 逐漸趨近式類比數位轉換器的位元錯誤率估計方法及測試技術
Bit Error Rate Estimation Method and Test Technique for SAR ADCs
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 118
中文關鍵詞: 逐漸趨近式類比數位轉換器位元錯誤率雜訊亞穩態數位電路錯誤非同步時脈非二進位演算法
外文關鍵詞: Successive approximation register (SAR) analog-to-digital converter (ADC), bit error rate (BER), noise, metastability, logic circuit fault, asynchronous timing, redundancy (or non-binary) algorithm
相關次數: 點閱:147下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了逐漸趨近式類比數位轉換器的快速位元錯誤率估計方法和改良之測試技術。
    我們分析了逐漸趨近式類比數位轉換器中產生位元錯誤的主要來源,包括比較器雜訊、比較器的亞穩態和邏輯電路錯誤,以了解位元錯誤之產生機制及其效應。基於分析的結果,我們建立位元錯誤率之數學模型,並以軟體實現此數學模型,據以估計逐漸趨近式類比數位轉換器的位元錯誤率(BER)。與傳統基於模擬器的估計方式相比,本論文所提出之估計方法可以在短時間內準確地估計逐漸趨近式類比數位轉換器的位元錯誤率。此外,我們還指出了傳統上用於測量逐漸趨近式類比數位轉換器之位元錯誤率的測試機制問題,提出了一種基於傳統測試機制的後處理方法,將測量到的位元錯誤率修改為正確的數值。
    為了驗證所提出之估計方法和後處理方法的準確性,我們以台積電40奈米CMOS標準1P9M製程實作逐漸趨近式類比數位轉換器之晶片。其核心面積為 0.0204 mm2。在0.9伏特電源供應及每秒一億兩千五百萬次的取樣頻率下,奈奎斯特輸入頻率下的有效位元為9.1位元。基於模擬的結果,本作品所測量到之位元錯誤率位於合理的區間,且其數值對取樣速率的改變趨勢也符合預測結果。

    A quick bit error rate estimation method and a modified test technique for SAR ADCs are presented in this thesis.
    We analyze the major sources that would result in bit errors, including the comparator noise, the comparator metastability, and the logic circuit fault, to understand the causes and effects of the bit errors in SAR ADCs. Based on the analysis, we construct a mathematic model, and implement a mathematical tool based on the model, to estimate the bit error rate (BER) of SAR ADCs. The proposed estimation method can estimate the BER of SAR ADCs accurately in a short time compared with the conventional simulator-based estimation method. In addition, we also point out a problem of the conventional test scheme used to measure the BER of SAR ADCs. A post-processing method based on the conventional test scheme is proposed to modify the measured BER to be a more correct one.
    A SAR ADC chip was fabricated in a TSMC 40-nm CMOS technology to verify the effectiveness of the proposed estimation method and the post-processing method. The core area occupies 0.0204 mm2. At a supply voltage of 0.9-V and sampling rate of 125-MS/s, the ENOB with input frequency near Nyquist frequency is 9.1 bits. Based on the simulation and measurement results, the BERs estimated by the proposed method locate within the reasonable region and the tendency of the BER value versus the sampling rate also fits to the estimated results.

    摘 要 III Abstract V List of Tables X List of Figures XI List of Abbreviations XV Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization of the Thesis 3 Chapter 2 Background Knowledge of SAR ADCs 4 2.1 Architecture 4 2.2 Operation Phases 5 2.2.1 Sampling Phase 5 2.2.2 Conversion Phase 6 2.3 Techniques of Speed Enhancement 7 2.3.1 Timing Control Schemes 7 2.3.2 Control Logic Design 10 2.3.3 Non-binary Algorithm 14 2.4 Bit Error in SAR ADCs 22 2.4.1 Introduction of Bit Errors 22 2.4.2 Comparator Noise 23 2.4.3 Comparator Metastability 26 2.4.4 Digital Circuit Fault 31 Chapter 3 Quick Bit Error Rate Estimation Method for SAR ADCs 35 3.1 BER Caused by Comparator Noise 36 3.1.1 Equations of BER Caused by Noise in Binary-weighted SAR ADCs 36 3.1.2 Equations of BER Caused by Noise in Non-binary SAR ADCs 45 3.2 BER Caused by Comparator Metastability 52 3.3 BER Caused by Comparator Noise Along with Metastability 60 3.4 BER Caused by Digital Circuit Fault 66 Chapter 4 Modified BER Test for SAR ADCs 68 4.1 Introduction 68 4.2 Conventional Bit Error Test Scheme 70 4.3 Proposed Post-Processing Method 73 4.3.1 Equations of BER Based on Difference between Two Non-ideal Outputs 74 4.3.2 The Transformation of Equations 75 Chapter 5 A 10-bit 125-MS/s SAR ADC with Low BER 79 5.1 Introduction 79 5.2 Architecture of the SAR ADC 80 5.3 Circuit Implementation 82 5.3.1 Bootstrapped Switch 82 5.3.2 Dynamic Comparator 84 5.3.3 Digital Control Logic Circuits 86 5.3.4 Capacitive DAC Array 90 Chapter 6 Simulation and Measurement Results 92 6.1 Layout and Chip Floor Plan 92 6.2 Simulation Results 95 6.3 Grounding in PCB Design 100 6.4 Die Micrograph and Measurement Setup 102 6.5 Measurement Results 104 Chapter 7 Conclusions and Future Work 112 Bibliography 114

    [1] B. Murmann. ADC Performance Survey 1997−2018. [Online]. Available: https://web.stanford.edu/~murmann/adcsurvey.html.
    [2] Shuo-Wei Mike Chen and R. W. Brodersen, "A 6b 600MS/s 5.3mW Asynchronous ADC in 0.13/spl mu/m CMOS," 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2006, pp. 2350-2359.
    [3] C. Liu, S. Chang, G. Huang and Y. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010.
    [4] Y. Zhu et al., "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, June 2010.
    [5] R. Kapusta, J. Shen, S. Decker, H. Li, E. Ibaragi and H. Zhu, "A 14b 80 MS/s SAR ADC With 73.6 dB SNDR in 65 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3059-3066, Dec. 2013.
    [6] J. Tsai, Y. Chen, M. Shen and P. Huang, "A 1-V, 8b, 40MS/s, 113μW charge-recycling SAR ADC with a 14μW asynchronous controller," 2011 Symposium on VLSI Circuits - Digest of Technical Papers, Honolulu, HI, 2011, pp. 264-265.
    [7] G. Huang, S. Chang, Y. Lin, C. Liu and C. Huang, "A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS," 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC), Singapore, 2013, pp. 289-292.
    [8] T. Waho, "Non-binary Successive Approximation Analog-to-Digital Converters: A Survey," 2014 IEEE 44th International Symposium on Multiple-Valued Logic, Bremen, 2014, pp. 73-78.

    [9] W. Liu, P. Huang and Y. Chiu, "A 12b 22.5/45MS/s 3.0mW 0.059mm2 CMOS SAR ADC achieving over 90dB SFDR," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, 2010, pp. 380-381.
    [10] W. Liu, P. Huang and Y. Chiu, "A 12-bit 50-MS/s 3.3-mW SAR ADC with background digital calibration," Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, San Jose, CA, 2012, pp. 1-4.
    [11] F. Kuttner, "A 1.2V 10b 20MSample/s non-binary successive approximation ADC in 0.13/spl mu/m CMOS," 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315), San Francisco, CA, USA, 2002, pp. 136-137.
    [12] Shuo-Wei Mike Chen and R. W. Brodersen, "A 6b 600MS/s 5.3mW Asynchronous ADC in 0.13/spl mu/m CMOS," 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2006, pp. 2350-2359.
    [13] T. Ogawa, H. Kobayashi, M. Hotta, Y. Takahashi, Hao San and Nobukazu Takai, "SAR ADC algorithm with redundancy," APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems, Macao, 2008, pp. 268-271.
    [14] T. Ogawa et al., "Non-binary SAR ADC with digital error correction for low power applications," 2010 IEEE Asia Pacific Conference on Circuits and Systems, Kuala Lumpur, 2010, pp. 196-199.
    [15] H. Tai, H. Chen and H. Chen, "A 3.2fJ/c.-s. 0.35V 10b 100KS/s SAR ADC in 90nm CMOS," 2012 Symposium on VLSI Circuits (VLSIC), Honolulu, HI, 2012, pp. 92-93.
    [16] T. Okazaki, D. Kanemoto, R. Pokharel, K. Yoshida and H. Kanaya, "A design technique for a high-speed SAR ADC using non-binary search algorithm and redundancy," 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, 2013, pp. 506-508.
    [17] H. Hong, W. Kim, S. Park, M. Choi, H. Park and S. Ryu, "A 7b 1GS/s 7.2mW nonbinary 2b/cycle SAR ADC with register-to-DAC direct control," Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, San Jose, CA, 2012, pp. 1-4.
    [18] C. Liu et al., "A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, 2010, pp. 386-387.
    [19] C. Liu, C. Kuo and Y. Lin, "A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2645-2654, Nov. 2015.
    [20] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl and B. Nauta, "A Double-Tail Latch-Type Voltage Sense Amplifier with 18ps Setup+Hold Time," 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, 2007, pp. 314-605.
    [21] J.-E. Eklund and C. Svensson, “Influence of metastability errors on SNR in successive-approximation A/D converters,” Analog Integr. Circuits Signal Process., vol. 26, no. 3, pp. 191–198, 2001.
    [22] A. Waters, J. Muhlestein and U. Moon, "Analysis of Metastability Errors in Conventional, LSB-First, and Asynchronous SAR ADCs," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 11, pp. 1898-1909, Nov. 2016.
    [23] C. Chan, Y. Zhu, S. Sin, B. Murmann, S. U and R. P. Martins, "Metastability in SAR ADCs," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 2, pp. 111-115, Feb. 2017.
    [24] S. Ghahramani, “Fundamentals OF Probability with Stochastic Processes,” Pearson College Div, pp. 111–113.
    [25] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. Klumperink and B. Nauta, "A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2008, pp. 244-610
    [26] H. Jeon and Y. Kim, "A CMOS low-power low-offset and high-speed fully dynamic latched comparator," 23rd IEEE International SOC Conference, Las Vegas, NV, 2010, pp. 285-288.
    [27] S. Wong, U. Chio, Y. Zhu, S. Sin, S. U and R. P. Martins, "A 2.3 mW 10-bit 170 MS/s Two-Step Binary-Search Assisted Time-Interleaved SAR ADC," in IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp. 1783-1794, Aug. 2013.
    [28] W. Kester, “Find those elusive ADC sparkle code and metastable states,” Application Note of Analog Devices, MT-011, pp. 1-10.
    [29] G. Huang, S. Chang, C. Liu and Y. Lin, "10-bit 30-MS/s SAR ADC Using a Switchback Switching Method," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 3, pp. 584-588, March 2013.
    [30] M. Dessouky and A. Kaiser, "Input switch configuration suitable for rail-to-rail operation of switched op amp circuits," in Electronics Letters, vol. 35, no. 1, pp. 8-10, 7 Jan. 1999.
    [31] G. Huang et al., “A fast bootstrapped switch for high-speed high-resolution A/D converter,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), 2010, pp. 382–385.
    [32] Shao-Hua Wan et al., “A 10-bit 50-MS/s SAR ADC with Techniques for Relaxing the Requirement on Driving Capability of Reference Voltage Buffers,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2013, pp. 293–296.
    [33] H. Zumbahlen, Staying well grounded, Analog Dialogue 46-06 June 2012.
    [34] Y. Zhu et al., "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, June 2010.
    [35] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, C. M. Huang, C. H. Huang, L. Bu and C. C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” in IEEE International Solid-State Circuits Conference, San Francisco, CA, 2010, pp. 386–387.
    [36] S. Sunny, Y. Chen and C. C. Boon, "A 4.06 mW 10-bit 150 MS/s SAR ADC With 1.5-bit/cycle Operation for Medical Imaging Applications," in IEEE Sensors Journal, vol. 18, no. 11, pp. 4553-4560, 1 June1, 2018.
    [37] D. Li, Z. Zhu, R. Ding and Y. Yang, "A 1.4-mW 10-Bit 150-MS/s SAR ADC With Nonbinary Split Capacitive DAC in 65-nm CMOS," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 11, pp. 1524-1528, Nov. 2018.

    無法下載圖示 校內:2024-06-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE