簡易檢索 / 詳目顯示

研究生: 楊學人
Yang, Hsueh-Jen
論文名稱: 降低(Ca,Sr)(Ti,Zr)O3介電材料燒結溫度及製作銅內電極MLCC元件之研究
A Study on Lowering Sintering Temperature of (Ca,Sr)(Ti,Zr)O3 Dielectric and MLCC with Cu inner Electrodes Fabrication
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 106
中文關鍵詞: 低溫燒結NP0 (Negative Positive Zero/C0G)銅電極MLCC
外文關鍵詞: low sintering temperature, NP0 (Negative Positive zero/C0G), Cu-MLCC
相關次數: 點閱:85下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著通訊設備的傳輸頻率逐漸提升,元件之高頻特性亦逐漸重要,擁有high-Q 之MLCC元件即適用在高頻設備上,其中,(Ca,Sr)(Ti,Zr)O3之NP0 (Negative Positive Zero/C0G)即屬於溫度補償型之陶瓷電容器,其特色除了擁有特低之介電損耗(<10E-4)與高頻下high-Q值外,其電容值在溫度-55~125℃間之容值變化量幾乎為零(±30ppm/℃),但(Ca,Sr)(Ti,Zr)O3材料必須以高溫1300℃之燒結溫度方能完成燒結,並且達到應有之特性。然而,在本實驗中為了讓(Ca,Sr)(Ti,Zr)O3材料得以和銅內電極(熔點1083℃)做共燒,因此必須降低其(Ca,Sr)(Ti,Zr)O3材料燒結溫度並且維持其原電性,因為銅電極除了導電性佳外,同時還可應用在高頻元件上以降低等效串連電阻ESR,最後,再針對能低溫燒結之(Ca,Sr)(Ti,Zr)O3材料配方製作成實際銅內電極之MLCC元件。
    本實驗為了降低燒結溫度,分別以不同比例添加Li2CO3 0.25~0.75wt%與本實驗自行合成之4Zn-B-O燒結助劑0~2wt%,並且在1000~1050℃下燒結,其中以1050℃燒結下可以得到最高之密度4.73g/cm3和介電常數k = 29.7,但電性的介電損耗Tan δ值則無法降至10E-4以下。接著對其添加0~2 mole%之MnCO3來改善電性,其結果為添加之添加劑Li2CO3,4Zn-B-O和MnCO3可降低燒結溫度與改善電性,並且在1050℃燒結下有最低之介電損耗,Tan δ = 2E-4 (<10E-4),同時,亦有最穩定之溫度係數TCC = ±30ppm/℃。最後在以此配方實際投料製作尺寸為0603之NP0銅內電極MLCC,產品在實際燒結後,在1050℃燒結下可得到介電常數k = 30.1,介電損耗Tan δ = 2E-4,和溫度係數TCC = -2.8ppm/℃。

    In recent years, with increasing transmission the frequency of device, the high frequency characteristics of the component becomes more important. (Ca,Sr)(Ti,Zr)O3 material is widely used as the main composition for making ceramic capacitors which satisfy NP0-type temperature coefficient. It has very low dielectric loss (<10E-4), high quality factor in high frequencies, and its capacitance variation is almost zero (±30ppm/℃) in the temperature range of -55~125℃. However, (Ca,Sr)(Ti,Zr)O3 materials need a high sintering temperature (~1300℃) to achieve good properties. Then, in order to let (Ca,Sr)(Ti,Zr)O3 material be able to co-fire with Cu-inner electrode (melting point: 1083℃), this experiment has to lower the (Ca,Sr)(Ti,Zr)O3 material sintering temperature and keep its electric properties. The reason is that the copper has good conductivity, and at the same time it can lower the device’s ESR (equivalent series resistance) when operating in the high frequency. Lastly, this study will fabricate the NP0 Cu-MLCC by this “lowering sintering temperature” result.
    In this study, in order to lower the sintering temperature, the 0.25~0.75wt% Li2CO3 and 0~2wt% 4Zn-B-O sintering aids powder will be added to (Ca,Sr)(Ti,Zr)O3 material to lower sintering temperature. The result is that the sintering aids can lower the sintering temperature, and the 1050℃ sintering can reach the highest density of 4.73g/cm3 and k value of 29.7 in this sintering temperature range between 1000~1050℃. But the dielectric loss still not below the standard (<10E-4). So, the 0~2mole% MnCO3 will be added to improve the electric properties. The result is that the adding additive of Li2CO3, 4Zn-B-O and MnCO3 can lower the sintering temperature and improve electric properties. It has the lowest dielectric loss 2E-4 and almost zero capacitance variation. Finally, the 0603 size NP0 Cu-MLCC will be fabricated with this result. The device after sintering at 1050℃, it can get the electric properties with dielectric constant of 30.1, dielectric loss of 2E-4, and temperature coefficient of capacitance of -2.8ppm/℃.

    第一章 緒論 1 1-1 前言 1 1-2 研究背景與動機 1 第二章 理論基礎與文獻回顧 3 2-1 積層陶瓷電容器 3 2-1-1 積層陶瓷電容基本原理 3 2-1-2 MLCC產品常見之種類 7 2-1-3 MLCC產品常見之規格 8 2-2 介電原理 9 2-2-1 空間電荷極化(Space Charge Polarization , PS) 10 2-2-2 電偶極極化(Dipole Polarization , Pd) 11 2-2-3 離子極化(Ionic Polarization , Pi) 11 2-2-4 電子極化(Electronic Polarization , Pe) 12 2-2-5 介電損耗 (Dielectric Loss) 14 2-3 燒結理論 15 2-3-1 固態燒結(Solid Phase Sintering) 15 2-3-2 液相燒結(Liquid Phase Sintering) 17 2-4 降低燒結相關文獻 21 2-5 MLCC陶瓷元件材料與製程 22 2-5-1 溶劑(Solvent) 23 2-5-2 分散劑(Dispersant) 24 2-5-3 黏結劑(Binder) 25 2-5-4 塑化劑(Plasticizer) 25 2-5-5 排膠(Binder burn out) 26 第三章 實驗製程 27 3-1 助燒劑的準備 27 3-2 塊材(Bulk)實驗方法與設備介紹 28 3-2-1 粉末配製 30 3-2-2 異丙醇球磨(Ball mill) 30 3-2-3 PVA黏結劑造粒 31 3-2-4 過篩與加壓成型 32 3-2-5 手動網印銅電極(Screen Printing) 32 3-2-6 燒結(Sintering) 33 3-3 積層陶瓷電容(MLCC)製程與設備介紹 34 3-3-1 漿料配製 35 3-3-2 製薄帶 35 3-3-3 堆疊 36 3-3-4 銅內電極印刷 38 3-3-5 水壓 39 3-3-6 切割(Cutting) 40 3-3-7 排膠(BBO)與燒結(Sintering) 41 3-3-8 沾銅端電極(Cu Dipping)與熱處理(Curing) 42 3-4 量測方法與分析儀器 43 3-4-1 熱機械分析(Thermal Mechanical Analysis,TMA) 43 3-4-2 收縮率(Shrinkage)計算 45 3-4-3 阿基米德(Archimedes)密度量測 45 3-4-4 場發射型掃瞄式電子顯微鏡 46 3-4-5 阻抗分析儀(Impedance Analyzer) 47 3-4-6 X-Ray繞射儀(X-Ray Diffraction;XRD) 48 第四章 結果與討論 50 4-1 NPO材料與4Zn-B-O合成粉末 50 4-1-1 NPO材料分析 50 4-1-2 4Zn-B-O合成粉末分析 52 4-2 添加Li2CO3對CSTZ之助燒效果 53 4-2-1 NPO添加Li2CO3之熱機械分析 53 4-2-2 NPO添加Li2CO3之燒結效果與微結構分析 54 4-3 增添4Zn-B-O對CSTZ之助燒效果 59 4-3-1 NL050增添4Zn-B-O之熱機械分析 59 4-3-2 NL050增添4Zn-B-O之燒結效果與微結構分析 60 4-3-3 NL075增添4Zn-B-O之熱機械分析 66 4-3-4 NL075增添4Zn-B-O之燒結效果與微結構分析 67 4-3-5 NL075增添4Zn-B-O之電性量測與分析 73 4-4 添加MnCO3對CSTZ電性之改善 76 4-4-1 NL075ZB420增添MnCO3之燒結效果與微結構分析 77 4-4-2 NL075ZB420增添MnCO3之電性量測與分析 85 4-5 實際MLCC產品燒結 93 第五章 結論與未來展望 101 參考文獻 103

    [1] M. J. Pan, C. A. Randall, “A Brief Introduction to Ceramic Capacitors,” IEEE Electr. Insul. Mag., 26, 44, 2010.
    [2] M. Valant, D. Suvorov, R. C. Pullar, K. Sarma, N.M. Alford, “A mechanism for low-temperature sintering,” J. Eur. Ceram. Soc., 26, 2777–2783, 2006.
    [3] J. Bernard, F. Belnou, D. Houivet, J. M. Haussonne, “Low sintering temperature of MgTiO3 for type I capacitors,” J. Eur. Ceram. Soc., 25, 2779–2783, 2005.
    [4] H. KISHI, Y. MIZUNO, H.CHAZONO, “Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives,” Jpn. J. Appl. Phys., 42, 1–15, 2003.
    [5] M. Pollet, X. Hochart, S. MARINEL, “Copper electrodes multilayer ceramic capacitors,” J . Mater. Sci., 39, 1959–1966, 2004.
    [6] 汪建民,“陶瓷技術手冊”,中華民國科技發展進會,1994。
    [7] 林怡君,” (K1-xLax/3)NbO3 陶瓷材料的製備、分析、及介電性質”,國立成功大學資源工程研究所碩士論文,93年6月。
    [8] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann. Introduction to ceramics, John Wiley and Sons, New York, 1976.
    [9] 肖定全,“陶瓷材料”,新文京開發出版社,台北,2003。
    [10] D. C. Sinclair, T. B. Adams, F. D. Morrison, A. R. West, ”CaCu3Ti4O12:One-step internal barrier layer capacitor,” Appl. Phys. Lett., 80, 2153, 2002.
    [11] J. W. Cahn, R. B. Heady, “Analysis of Capillary Forces in Liquid - Phase Sintering of Jagged Particles,” J. Am. Ceram., 53, 406–409, 1970.
    [12] W. J. Huppmann and G. Petzow, Sintering process, Edited by G.C. Kuczynski, Plenum Press, New York, 1980.
    [13] R. M. German, Liquid Phase Sintering, Plenum Press, New York, 1985.
    [14] H. W. You, J. H. Koh, “Low Temperature Sintering of Li2CO3 Added (Ba,Sr)TiO3 Ceramics,” Integrated Ferroelectrics, 86, 59–65, 2006.
    [15] S. M. Rhim, S. Hong, H. Bak, O. K. Kim, ” Effects of B2O3 Addition on the Dielectric and Ferroelectric Properties of Ba0.7Sr0.3TiO3 Ceramics,” J. Am. Ceram. Soc., 83, 1145–1148, 2000.
    [16] J. R. Kim, D. W. Kim, I. S. Cho, B. S. Kim, J. An, K. S. Hong, ”Low temperature sintering and microwave dielectric properties of Ba3Ti5Nb6O28 with ZnO-B2O3 glass additions for LTCC applications,” J. Eur. Ceram. Soc., 27, 3075–3079, 2007.
    [17] H. Zhou, H. Wang, D, Zhou, L. Pang, X. Yao, “Effect of ZnO and B2O3 on the sintering temperature and microwave dielectric properties of LiNb0.6Ti0.5O3 ceramics,” Mat. Chem. and Phy., 109, 510–514, 2008.
    [18] Y. S. Su, J. H. Jean, “Low-Fire Processing and Microwave Dielectric Properties of BaTi4O9 with BaO-ZnO-Li2O-B2O3-SiO2 Glass,” Department of Materials Science and Engineering, National Tsing Hua University.
    [19] K. Yan, T. Karaki, M. Adachi, “Low-Temperature Sintering of High Permittivity Ca0.8Sr0.2TiO3 – Li0.5Sm0.5TiO3 Microwave Dielectric Ceramics with B2O3–CuO Addition,” Jap. J. App. Phy., 48, 2009.
    [20] S.G. Lu, K.W. Kwok, H.L.W. Chan, C.L. Choy, “Structural and electrical properties of BaTi4O9 microwave ceramics incorporated with glass phase,” Mat. Sci. Eng., B99, 491, 2003.
    [21] 林麗娟, X光繞射原理及其運用, 工業材料, 86, 101, 1994.
    [22] G. Besendorfer, A. Roosen, C. Modes, T. Betz, “Factors Influencing the Green Body Properties and Shrinkage Tolerance of LTCC Green Tapes,” Int. J. App. Ceram. Technol., 4, 53–59, 2007.
    [23] P. Nahass, W. E. Rhine, R. L. Pober, H. K. Bowen, W. L. Robbins, K.M. Nair, R. Pohanka, R.C. Buchanan, Ceram. Trans., 15, 355, 1990.
    [24] R. Moreno, “The Role of Slip Additives in Tape Casting Technology: Part I-Solvents and Dispersants,” Am. Ceram. Soc. Bull., 71, 1521–1531, 1992.
    [25] D.J. Shaw, Colloid stability, in Colloid and Surface Chemistry, 4th edn, Butterworth - Heinemann, Oxford, 210, 1992.
    [26] K. Nagata, “Rheological Behavior of Suspension and Properties of Green Sheet Effect of Compatibility between Dispersant and Binder,” J. Ceram. Soc. Jpn., 101, 1271–1275, 1992.
    [27] N. Ushifusa, M. Cima, “Aqueous Processing of Mullite-Containing Green Sheets,” J. Am. Ceram. Sot., 74, 2443–2447, 1991.
    [28] K. Nagata, S. Hirano, G.L. Messing, H. Hausner, Ceram. Trans., 22, 335, 1991.
    [29] K. Nagata, M. J. Cima, Ceram. Trans., 26, 205, 1992.
    [30] Nomura, S., Tomaya, K. and Kaneta, K., “Effect of Mn doping on the dielectric properties of Ba2Ti9O20 ceramics at microwave frequencies,” Jpn. J. App. Phys., 22, 1125–1128, 1983.
    [31] S. H. Chen, Y. C. Wu, S. F. Wang, “Effect of Mn Ion-Doped on Barium Titanate Ceramics on Microstructure and Properties,” 2008.
    [32] Bowen, Uhlmann “Introduction to Ceramics” Wiley, New York, 1976.
    [33] 朱啟維,”錳離子添加對Ba1.002(Ti0.82Zr0.18)O3+δ絕緣阻值及介電性質之影響”,國立成功大學材料科學及工程學系碩士論文,94年6月。
    [34] C. Sun, X. Wang, A. Ji, L. Li, “Low-Temperature Sintering of Negative – Positive – Zero - Type Temperature-Stable Ceramics with ZnO–B2O3 Flux and SrCO3 Additive,” Jap. J. App. Phy., 50, 2011.
    [35] D. W. Kim, B. K. Kim, H. Je, J. Park, “Degradation Mechanism of Dielectric Loss in Barium Niobate Under a Reducing Atmosphere,” J. Am. Ceram. Soc., 89, 3302-3304, 2006.
    [36] X. G. Wu, H. Wang, Y. H. Chen, D. Zhou, “Synthesis and Microwave Dielectric Properties of Zn3B2O6 Ceramics for Substrate Application,” J. Am. Ceram. Soc., 1-3, 2012.
    [37] T. Hu, H. Jantunen, A. Uusimaki, S. Leppavuori, “Ba0.7Sr0.3TiO3 powders with B2O3 additive prepared by the sol-gel method for use as microwave material,” Mat. Sci. Semi. Proc., 5, 215-221, 2003.

    下載圖示 校內:2017-08-27公開
    校外:2017-08-27公開
    QR CODE