簡易檢索 / 詳目顯示

研究生: 廖子豪
Liao, Zi-Hao
論文名稱: 風能與採用電網形成之太陽能發電透過模組化多階轉換器連接至多機電力系統之穩定度分析
Stability Analysis of Wind and Grid-Forming PV Generation Connected to a Multi-Machine Power System via Modular Multilevel Converters
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 174
中文關鍵詞: 風場太陽能場電網形成多機電力系統穩定度模組化多階轉換器
外文關鍵詞: wind farm, photovoltaic farm, grid forming, multi-machine power system, stability, modular multilevel converter
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出基於模組化多階轉換器之混合再生能源系統連接至IEEE 14匯流排之多機電力系統,該混合再生能源是由基於雙饋式感應發電機之風場以及太陽能場共同連接至模組化多階轉換器。文中也提出了基於太陽能場電壓源換流器之電網形成的控制方案,俾降低電網跟隨控制缺乏慣性支持的影響。在穩態及小信號穩定度研究方面,分別對所研究系統的不同案例進行比較,並且比較所研究系統分別採用電網跟隨以及電網形成在不同案例下對於系統的效果,於動暫態研究方面,分析所研究系統在不同擾動條件下的模擬結果,並且比較所研究系統採用電網跟隨以及電網形成之效果,結果表明發生無論是在穩態或是在動暫態發生干擾時,採用電網形成之系統在混合再生能源側皆有較好的表現。

    This thesis proposes a hybrid renewable energy system based on a modular multilevel converter connected to an IEEE 14-bus multi-machine power system. The hybrid renewable energy system consists of a wind farm based on doubly fed induction generators and a solar farm, both connected to the modular multilevel converter. The paper also presents a control scheme for grid-forming based on voltage-source inverter in the solar farm to mitigate the impact of the lack of inertial support in grid-following control. For steady-state and small-signal stability analysis, different cases of the studied system are compared, and the effects of employing grid-following and grid-forming strategies in different scenarios are evaluated. For dynamic and transient analysis, simulation results of the studied system under various disturbance conditions are analyzed, and the effects of employing grid-following versus grid-forming strategies are compared. The results indicate that the system using grid-forming control demonstrates better performance on the hybrid renewable energy side, both in steady-state and during dynamic transients when disturbances occur.

    摘要 I ABSTRACT II 致謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIV 符號說明 XVII 第一章 緒論 1 1-1 研究動機 1 1-2 相關文獻回顧 3 1-3 本論文貢獻 7 1-4 研究內容概述 8 第二章 研究系統架構與數學模型 10 2-1 前言 10 2-2 風力渦輪機之數學模型 13 2-3 旋角控制器之數學模型 14 2-4 質量-彈簧-阻尼器系統之數學模型 16 2-5 雙饋式感應發電機之數學模型 17 2-6 雙饋式感應發電機之電力電子轉換器數學模型 21 2-6-1 雙饋式感應發電機之轉子側轉換器 21 2-6-2 雙饋式感應發電機之電網側轉換器 22 2-7 太陽能發電系統 24 2-7-1 太陽能電池之數學模型 25 2-7-2 太陽能陣列之數學模型 26 2-7-3 直流對直流升壓轉換器之數學模型 27 2-8 多機系統模型 31 2-8-1 同步發電機及同步調相機之數學模型 32 2-8-2 激磁系統之數學模型 34 2-8-3 渦輪機轉矩之數學模型 36 2-8-4 調速機之數學模型 37 2-8-5 負載與傳輸線網路之數學模型 38 第三章 模組化多階轉換器之工作原理與數學模型 41 3-1 前言 41 3-2 模組化多階轉換器內部分析 42 3-3 模組化多階轉換器控制設計 50 3-3-1 主要控制器設計 50 3-3-2 循環電流抑制控制器 53 3-3-3 模組化多階轉換器整體控制架構 55 第四章 太陽能場電壓源換流器之控制策略 57 4-1 前言 57 4-2 電網跟隨控制策略 58 4-3 電網形成控制策略 60 第五章 穩態與小訊號穩定度分析 64 5-1 前言 64 5-2 系統特徵值分析方法 65 5-3 研究系統架構於案例一之系統穩態工作點三維特性曲線圖 68 5-4 研究系統架構於案例二之系統特徵值結果 72 5-5 研究系統架構於案例三之系統特徵值分析 76 5-6 研究系統架構於案例四之系統特徵值分析 84 5-7 研究系統架構於案例五之系統特徵值分析 91 第六章 動態與暫態分析 98 6-1 前言 98 6-2 動態分析 99 6-2-1 固定風速與變動日射量之動態分析 99 6-2-2 變動風速與變動日射量之動態分析 106 6-2-3 交流匯流排一號同步發電機發生轉矩干擾之動態分析 113 6-3 系統之暫態分析 120 6-3-1 太陽能場跳脫之暫態分析 120 6-3-2 交流匯流排三相短路故障之暫態分析 127 第七章 結論與未來研究方向 134 7-1 結論 134 7-2 未來研究方向 135 參考文獻 137 附錄:本論文研究系統架構所使用之參數 142

    [1] 國家發展委員會。[Online]. Available: https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76, retrieved date: May 7, 2024.
    [2] 台灣電力公司。[Online]. Available: https://www.taipower.com.tw/tc/Chart.aspx, retrieved date: May 7, 2024.
    [3] K. Jia, X. Dong, Z. Wen, W. Wu, and T. Bi, “Harmonic injection based fault ride-through control of MMC-HVDC connected offshore wind farms,” IEEE Trans. Sustainable Energy, vol. 14, no. 3, pp. 1796-1806, Jul. 2023.
    [4] U. Karaagac, J. Mahseredjian, L. Cai, and H. Saad, “Offshore wind farm modeling accuracy and efficiency in MMC-Based multiterminal HVDC connection,” IEEE Trans. Power Delivery, vol. 32, no. 2, pp. 617-627, Apr. 2017.
    [5] R. Yang, G. Shi, C. Zhang, G. Li, and X. Cai, “Internal energy based grid-forming control for MMC-HVDC systems with wind farm integration,” IEEE Trans. Industry Applications, vol. 59, no. 1, pp. 503-512, Jan. 2023.
    [6] M. Yang, X. Pei, M. Zhang, Y. Zhang, and H. Wang, “An improved master-slave control strategy for automatic DC voltage control under the master station failure in MTDC system,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 2, pp. 1530-1541, Apr. 2023.
    [7] L. Xuan, S. Qiang, L. Wenhua, and M. Yulong, “Study on fault ride-through capability of wind farm integration using MMC-HVDC,” in Proc. 2014 International Conference on Power System Technology, Chengdu, China, Oct. 20-22, 2014.
    [8] H. Li, X. Fan, and S. Liu, “Small-signal stability modeling for MMC-based DC grids with voltage slope control and influence analysis of parameters,” IEEE Access, vol. 10, pp. 4686-4698, Dec. 2021.
    [9] K. Ilves, A. Antonopoulos, S. Norrga, and H. -P. Nee, “Steady-state analysis of interaction between harmonic components of arm and line quantities of modular multilevel converters,” IEEE Trans. Power Electronics, vol. 27, no. 1, pp. 57-68, Jan. 2012.
    [10] R. Yang, G. Shi, X. Cai, C. Zhang, G. Li, and J. Liang, “Autonomous synchronizing and frequency response control of multi-terminal DC systems with wind farm integration,” IEEE Trans Sustainable Energy, vol. 11, no. 4, pp. 2504-2514, Oct. 2020.
    [11] P. Meng, W. Xiang, Y. He, and J. Wen, “Coordination control of wind farm integrated cascaded hybrid HVDC system in weak grids,” IEEE Trans Power Delivery, vol. 38, no. 3, pp. 1837-1847, Jun. 2023.
    [12] R. Rosso, X. Wang, M. Liserre, X. Lu, and S. Engelken, “Grid-forming converters: control approaches, grid-synchronization, and future trends—A review,” IEEE Open Journal of Industry Applications, vol. 2, pp. 93-109, Apr. 2021.
    [13] X. Gao, D. Zhou, A. A. Moghaddam, and F. Blaabjerg, “Stability analysis of grid-following and grid-forming converters based on state-space model,” in Proc. 2022 International Power Electronics Conference (IPEC-Himeji 2022- ECCE Asia), Himeji, Japan, May 15-19, 2022, pp. 422-428.
    [14] P. Sun, H. Xu, J. Yao, Y. Chi, S. Huang, and J. Cao, “Dynamic interaction analysis and damping control Strategy of hybrid system with grid-forming and grid-following control modes,” IEEE Trans. Energy Conversion, vol. 38, no. 3, pp. 1639-1649, Sep. 2023.
    [15] M. Ahmed, I. Harbi, R. Kennel, J. Rodriguez, and M. Abdelrahem, “Model-based maximum power point tracking algorithm with constant power generation capability and fast DC-link dynamics for two-stage PV systems,” IEEE Access, vol. 10, pp. 48551-48568, May 2022.
    [16] 武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年7月。
    [17] K. Kanimozhi, K. K. Prabhakaran, N. Harischandrappa, and B. Venkatesaperumal, “Development of small signal model and stability analysis of PV-grid integration system for EV charging application,” IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 5, no. 1, pp. 274-284, Jan. 2024.
    [18] W. Janke, “Averaged models of pulse-modulated DC-DC power converters. Part I. Discussion of standard methods,” Archives of Electrical Engineering, vol. 61, no. 4, pp. 609-631, Nov. 2012.
    [19] F. Méndez-Díaz, B. Pico, E. Vidal-Idiarte, J. Calvente, and R. Giral, “HM/PWM seamless control of a bidirectional buck-boost converter for a photovoltaic application,” IEEE Trans. Power Electronics, vol. 34, no. 3, pp. 2887-2899, Mar. 2019.
    [20] Q. Bi, G. Zhou, L. Deng, and N. Xue, “Target voltage iterations based global flexible power point tracking algorithm under partial shading photovoltaic systems,” IEEE Trans. Sustainable Energy, vol. 15, no. 1, pp. 236-248, Jan. 2024.
    [21] D. A. Nugraha, K. L. Lian, and Suwarno, “A novel MPPT method based on cuckoo search algorithm and golden section search algorithm for partially shaded PV system,” Canadian Journal of Electrical and Computer Engineering, vol. 42, no. 3, pp. 173-182, Oct. 2019.
    [22] E. Mostajeran, N. Amiri, and J. Jatskevich, “Constant-parameter voltage-behind-reactance synchronous machine models considering main flux saturation for EMTP-type programs,” IEEE Trans. Energy Conversion, vol. 39, no. 1, pp. 400-411, Mar. 2024.
    [23] K. Chavan, G. B. Patil, and R. More, “Transient stability analysis of IEEE test system,” in Proc. 2024 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship (ICWITE), Bangalore, India, Feb. 16-17, 2024, pp. 691-695.
    [24] IEEE, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, IEEE Standard 421.5-2005, Dec. 2005.
    [25] M. Trujillo, R. W. Kenyon, G. Yau, L. Yu, A. Hoke and B. -M. Hodge, “Operability of a power system with synchronous condensers and grid-following inverters,” in Proc. 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), Philadelphia, PA, USA, Jun. 05-10, 2022, pp. 1038-1042.
    [26] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Piscataway, NJ, USA: Wiley-IEEE Press, 2003.
    [27] P. W. Sauer and M. A. Pai, Power System Dynamics and Stability, Upper Saddle River, NJ, USA: Prentice-Hall, 1998.
    [28] P. Kundur, Power System Stability and Control, New York, NY, USA: McGraw-Hill, 1994.
    [29] Y. Ma, D. Zhu, Z. Zhang, X. Zou, J. Hu, and Y. Kang, “Modeling and transient stability analysis for type-3 wind turbines using singular perturbation and Lyapunov methods,” IEEE Trans. Industrial Electronics, vol. 70, no. 8, pp. 8075-8086, Aug. 2023.
    [30] 彭賢倫,整合風能、太陽能與波浪能發電系統之直流微電網穩定度分析與研究,國立成功大學電機工程學系碩士論文,2019年7月。
    [31] 柯王君奕,採用全釩氧化還原液流電池及超級電容器於市電併聯型混合再生能源系統之穩定度改善分析,國立成功大學電機工程學系碩士論文,2020年7月。
    [32] 林裕涵,整同步發電機採用以模組化多階轉換器為基礎之高壓直流鏈連接至電網之穩定度分析,國立成功大學電機工程學系碩士論文,2023年7月。
    [33] 李旻舫,使用雙向虛擬慣性控制於混合交流/直流微電網系統之性能改善,國立成功大學電機工程學系碩士論文,2022年7月。
    [34] 黃弘昇,整合風能、燃料電池、微渦輪發電系統之直流微電網饋入多機系統的穩定度分析,國立成功大學電機工程學系碩士論文,2021年7月。

    無法下載圖示 校內:2029-06-27公開
    校外:2029-06-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE