簡易檢索 / 詳目顯示

研究生: 陳永富
Chen, Yung-Fu
論文名稱: 利用硫化鉛緩衝層製備優選方向有機鈣鈦礦薄膜與其電阻性記憶特性之研究
Study on Lead Sulfide buffer layer induced the preferential growth of CH3NH3PbI3 films and its resistive memory properties
指導教授: 施權峰
Shih, Chuan-Feng
共同指導教授: 呂正傑
Leu, Cheng-Chich
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 99
中文關鍵詞: 硫化鉛有機鈣鈦礦優選方向化學浴沉積法
外文關鍵詞: PbS, preferred orientation, CH3NH3PbI3, chemical bath deposition
相關次數: 點閱:81下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硫化鉛(100)晶面與有機鈣鈦礦(110)晶面有很好的晶格匹配度。故,本實驗計畫透過化學浴法製備出具有織構的硫化鉛薄膜,期望藉由此硫化鉛薄膜織構(優選方向)結構來控制有機鈣鈦礦(CH3NH3PbI3)薄膜優選方向。但經由實驗發現,不需控制硫化鉛(100)晶面,也能成長出具有織構的CH3NH3PbI3薄膜。
    本論文研究分成兩部份,第一部份討論硫化鉛(Lead sulphide,PbS)緩衝層經由化學浴沉積法(chemical bath deposition,CBD)在不同基板上的沉積情況。接著,探討碘化處理的溫度、時間、碘片克數對硫化鉛緩衝層轉化為碘化鉛(Lead iodide,PbI2)薄膜的效應,由實驗發現影響硫化鉛轉化成碘化鉛,參數重要性為:碘片克數>碘化溫度>碘化時間。從實驗結果得知利用硫化鉛緩衝層所成長的碘化鉛與利用旋轉塗佈法所成長的碘化鉛,兩者表面形貌差異甚大。最後,透過爐管方式將MAI以低壓(1~2torr)環境下氣化,並探討MAI不同的氣化時間對CH3NH3PbI3表面形貌以及薄膜織構的影響。從實驗結果證實,確實經由硫化鉛緩衝層可製備出具有優選方向的 CH3NH3PbI3薄膜,其形成織構的原因為必須將CH3NH3PbI3晶粒尺寸提升,並發現在不同的基板(鉬玻璃基板與ITO玻璃基板)上織構表現會有差異,歸咎於基板本身具有優選方向所以加強了CH3NH3PbI3的織構表現。
    第二部份分別將硫化鉛緩衝層所製備的與旋轉塗佈法所製備出的CH3NH3PbI3薄膜,製作成電阻式記憶體(RRAM)元件,結構為ITO/ CH3NH3PbI3/PMMA/Al,進行電性上的分析與探討。從實驗結果發現,CH3NH3PbI3薄膜厚度會影響on/off ratio,CH3NH3PbI3最佳膜厚約400nm此時on/off ratio達103,上層PMMA則為50mg/ml電性表現上最佳。我們發現具有織構的CH3NH3PbI3薄膜應用於RRAM整體漏電流的表現比旋轉塗佈法所製備的為低。

    In this study, PbS buffer layer with (100) preferred orientation was deposited via chemical bath deposition (CBD) process. It is expected to control the orientation of the CH3NH3PbI3 thin film by incorporating the PbS buffer layer. The PbS buffer layer induced the preferential growth of CH3NH3PbI3 perovskite films (PbS-seeding process) involves three-step processes. a. PbS deposition: The PbS buffer layer was deposited via CBD method. b. PbI2 conversion: Iodization treatment of PbS to form PbI2. c. CH3NH3PbI3 conversion: Formation of CH3NH3PbI3 by simultaneous annealing and exposure to MAI vapor at low pressure. As compared to the spin-coating derived CH3NH3PbI3 thin film, the PbS-seeded growth of CH3NH3PbI3 thin film exhibited a larger grain structure, leading to a (110)-textured structure (Figure 1(a)). For comparison, the resistive random access memories (RRAM) were constructured by these two kinds of CH3NH3PbI3 film (PbS-seeding process and spin-coating process). Figure 1(b) shows a typical I-V characteristic of RRAM with the CH3NH3PbI3 thin film prepared by the PbS-seeding process.

    摘要 I Extended Abstract II 圖目錄 XXII 表目錄 XXVII 第1章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 論文架構 3 第2章 文獻回顧與理論基礎 4 2-1 化學浴沉積法介紹 4 2-1-1 化學浴法之薄膜成長機制 4 2-1-2 化學浴法之硫化鉛薄膜製備 6 2-2 有機無機混合鈣鈦礦薄膜製備方式與相關研究 7 2-2-1 旋轉塗佈法:一步法、兩步法 7 2-2-2 氣相沉積法、共蒸鍍法 9 2-2-3 電化學沉積法、原子層沉積法 11 2-2-4 太陽能電池 12 2-2-5 鐵電性質 15 2-3 記憶體介紹 16 2-3-1 相變化記憶體(PRAM) 17 2-3-2 磁阻式記憶體(MRAM) 18 2-3-3 鐵電記憶體(FeRAM) 19 2-3-4 電阻式記憶體(RRAM) 20 2-4 電阻轉換機制 24 2-4-1 金屬離子的電化學效應(Electrochemical metallization effect,ECM) 24 2-4-2 價電子轉換效應(Valance change effect,VCM) 25 2-4-3 熱化學效應(Thermochemical effect,TCM) 26 2-5 介電層導電機制 27 2-5-1 熱發射(Thermionic emission)蕭特基發射(Schottky emission) 28 2-5-2 空間電荷限電流(Space-Charge-Limited-Current,SCLC) 29 2-5-3 穿隧(Tunneling) 29 2-5-4 普爾-法蘭克發射(Poole-Frenkel emission) 31 2-5-5 歐姆接觸(Ohmic contact) 32 2-5-6 離子電導(Ionic conduction) 32 第3章 實驗步驟與方法 33 3-1 實驗流程 33 3-2 實驗步驟 34 3-2-1 基板清洗 34 3-2-2 硫化鉛緩衝層製備 35 3-2-3 碘化鉛薄膜製備 36 3-2-4 MAPbI3薄膜製備(硫化鉛緩衝層成長與旋轉塗佈法成長) 37 3-2-5 PMMA鍍製 40 3-2-6 上電極蒸鍍 41 3-3 物性與電性分析儀器介紹 42 3-3-1 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 42 3-3-2 結晶繞射分析(X-ray diffraction,XRD) 43 3-3-3 電壓-電流量測 44 第4章 結果與討論 45 4-1 硫化鉛薄膜緩衝層之有機鈣鈦礦薄膜製備 45 4-1-1 硫化鉛化學浴沉積法 46 4-1-2 硫化鉛碘化處理討論 50 4-1-3 硫化鉛緩衝層與旋轉塗佈成長有機鈣鈦礦薄膜 60 4-1-4 結論 70 4-2 電阻式記憶特性電性比較 71 4-2-1 硫化鉛緩衝層成長有鈣鈦礦於電阻式記憶特性分析 71 4-2-2 旋轉塗佈成長有機鈣鈦礦於電阻式記憶特性分析 75 4-2-3 硫化鉛緩衝層與旋轉塗佈成長有機鈣鈦礦於元件綜合比較 88 4-2-4 結論 92 第5章 結論與未來規劃 93 5-1 結論 93 5-2 未來規劃 94 參考文獻 95

    [1] W. Zhu, L. Kang, T. Yu, B. Lv, Y. Wang, X. Chen, et al., "Facile Face-Down Annealing Triggered Remarkable Texture Development in CH3NH3PbI3 Films for High-Performance Perovskite Solar Cells," ACS Appl Mater Interfaces, vol. 9, pp. 6104-6113, Feb 22 2017.
    [2] C. Fei, L. Guo, B. Li, R. Zhang, H. Fu, J. Tian, et al., "Controlled growth of textured perovskite films towards high performance solar cells," Nano Energy, vol. 27, pp. 17-26, 2016.
    [3] S. R. Raga, L. K. Ono, and Y. Qi, "Rapid perovskite formation by CH3NH2gas-induced intercalation and reaction of PbI2," J. Mater. Chem. A, vol. 4, pp. 2494-2500, 2016.
    [4] Z. Ning, X. Gong, R. Comin, G. Walters, F. Fan, O. Voznyy, et al., "Quantum-dot-in-perovskite solids," Nature, vol. 523, pp. 324-8, Jul 16 2015.
    [5] J. J. Valenzuela-Jáuregui, R. Ramı́rez-Bon, A. Mendoza-Galván, and M. Sotelo-Lerma, "Optical properties of PbS thin films chemically deposited at different temperatures," Thin Solid Films, vol. 441, pp. 104-110, 2003.
    [6] S. Sengupta, M. Perez, A. Rabkin, and Y. Golan, "In situ monitoring the role of citrate in chemical bath deposition of PbS thin films," CrystEngComm, vol. 18, pp. 149-156, 2016.
    [7] S. Seghaier, N. Kamoun, R. Brini, and A. B. Amara, "Structural and optical properties of PbS thin films deposited by chemical bath deposition," Materials Chemistry and Physics, vol. 97, pp. 71-80, 2006.
    [8] J. A. García-Valenzuela, M. R. Baez-Gaxiola, and M. Sotelo-Lerma, "Chemical bath deposition of PbS thin films on float glass substrates using a Pb(CH3COO)2–NaOH–(NH2)2CS–N(CH2CH2OH)3–CH3CH2OH definite aqueous system and their structural, optical, and electrical/photoelectrical characterization," Thin Solid Films, vol. 534, pp. 126-131, 2013.
    [9] I. Pop, C. Nascu, V. Ionescu, E. Indrea, and I. Bratu, "Structural and optical properties of PbS thin films obtained by chemical deposition," Thin Solid Films, vol. 307, pp. 240-244, 1997/10/10 1997.
    [10] J. H. Im, I. H. Jang, N. Pellet, M. Gratzel, and N. G. Park, "Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells," Nat Nanotechnol, vol. 9, pp. 927-32, Nov 2014.
    [11] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, et al., "A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells," Angew Chem Int Ed Engl, vol. 53, pp. 9898-903, Sep 08 2014.
    [12] W.-C. Lai, K.-W. Lin, Y.-T. Wang, T.-Y. Chiang, P. Chen, and T.-F. Guo, "Oxidized Ni/Au Transparent Electrode in Efficient CH3NH3PbI3Perovskite/Fullerene Planar Heterojunction Hybrid Solar Cells," Advanced Materials, pp. n/a-n/a, 2016.
    [13] K. Liang, D. B. Mitzi, and M. T. Prikas, "Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique," Chemistry of Materials, vol. 10, pp. 403-411, 1998/01/19 1998.
    [14] Z. Song, S. C. Watthage, A. B. Phillips, and M. J. Heben, "Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications," Journal of Photonics for Energy, vol. 6, p. 022001, 2016.
    [15] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, et al., "Planar heterojunction perovskite solar cells via vapor-assisted solution process," J Am Chem Soc, vol. 136, pp. 622-5, Jan 15 2014.
    [16] Y. Li, J. K. Cooper, R. Buonsanti, C. Giannini, Y. Liu, F. M. Toma, et al., "Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing," J Phys Chem Lett, vol. 6, pp. 493-9, Feb 05 2015.
    [17] D. B. Mitzi, M. T. Prikas, and K. Chondroudis, "Thin Film Deposition of Organic−Inorganic Hybrid Materials Using a Single Source Thermal Ablation Technique," Chemistry of Materials, vol. 11, pp. 542-544, 1999/03/01 1999.
    [18] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, pp. 395-8, Sep 19 2013.
    [19] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, et al., "Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals," Science, vol. 347, pp. 519-522, 2015.
    [20] J. A. Koza, J. C. Hill, A. C. Demster, and J. A. Switzer, "Epitaxial Electrodeposition of Methylammonium Lead Iodide Perovskites," Chemistry of Materials, vol. 28, pp. 399-405, 2016.
    [21] B. R. Sutherland, S. Hoogland, M. M. Adachi, P. Kanjanaboos, C. T. Wong, J. J. McDowell, et al., "Perovskite Thin Films via Atomic Layer Deposition," Adv Mater, vol. 27, pp. 53-8, Jan 7 2015.
    [22] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, vol. 131, pp. 6050-+, May 6 2009.
    [23] Y. C. Kim, N. J. Jeon, J. H. Noh, W. S. Yang, J. Seo, J. S. Yun, et al., "Beneficial Effects of PbI2Incorporated in Organo-Lead Halide Perovskite Solar Cells," Advanced Energy Materials, vol. 6, p. 1502104, 2016.
    [24] B. Ritholtz, "Best Research-Cell Efficiencies," July 7 2015.
    [25] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, "
    " Nanoscale, vol. 3, pp. 4088-93, Oct 05 2011.
    [26] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites," Science, vol. 338, pp. 643-647, 2012.
    [27] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, et al., "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber," Science, vol. 342, pp. 341-4, Oct 18 2013.
    [28] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, vol. 131, pp. 6050-6051, 2009/05/06 2009.
    [29] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells," Nat Mater, vol. 13, pp. 897-903, Sep 2014.
    [30] Y. Kutes, L. Ye, Y. Zhou, S. Pang, B. D. Huey, and N. P. Padture, "Direct Observation of Ferroelectric Domains in Solution-Processed CH3NH3PbI3 Perovskite Thin Films," J Phys Chem Lett, vol. 5, pp. 3335-9, Oct 2 2014.
    [31] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, "Atomistic origins of high-performance in hybrid halide perovskite solar cells," Nano Lett, vol. 14, pp. 2584-90, May 14 2014.
    [32] E. J. Juarez-Perez, R. S. Sanchez, L. Badia, G. Garcia-Belmonte, Y. S. Kang, I. Mora-Sero, et al., "Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells," J Phys Chem Lett, vol. 5, pp. 2390-4, Jul 03 2014.
    [33] G. A. Sewvandi, D. Hu, C. Chen, H. Ma, T. Kusunose, Y. Tanaka, et al., "Antiferroelectric-to-Ferroelectric Switching inCH3NH3PbI3Perovskite and Its Potential Role in Effective Charge Separation in Perovskite Solar Cells," Physical Review Applied, vol. 6, 2016.
    [34] Z. Fan, J. Xiao, K. Sun, L. Chen, Y. Hu, J. Ouyang, et al., "Ferroelectricity of CH3NH3PbI3 Perovskite," J Phys Chem Lett, vol. 6, pp. 1155-61, Apr 02 2015.
    [35] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, et al., "Phase Change Memory," Proceedings of the IEEE, vol. 98, pp. 2201-2227, 2010.
    [36] "STT-MRAM can replace low-density DRAM and SRAM, especially for mobile and storage devices. But what is it and how does it differ from MRAM?," 2014.
    [37] "Application of Ferroelectric Memory in New Generation Electronic Energy Meter," EET Electronic engineering album, 2010.
    [38] N.H.Duc, "MAGNETO-ELECTROSTRICTIVE SPINTRONICS," Advanced Magnetism and Magnetic Materials, vol. 2, 2015.
    [39] R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges," Advanced Materials, vol. 21, pp. 2632-2663, 2009.
    [40] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nat Mater, vol. 6, pp. 833-840, 11//print 2007.
    [41] Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, et al., "Giant switchable photovoltaic effect in organometal trihalide perovskite devices," Nat Mater, vol. 14, pp. 193-8, Feb 2015.
    [42] B. Hwang, C. Gu, D. Lee, and J. S. Lee, "Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory," Sci Rep, vol. 7, p. 43794, Mar 08 2017.
    [43] E. Yoo, M. Lyu, J.-H. Yun, C. Kang, Y. Choi, and L. Wang, "Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH3NH3PbI3−xClx/FTO structure," J. Mater. Chem. C, vol. 4, pp. 7824-7830, 2016.
    [44] C. Gu and J. S. Lee, "Flexible Hybrid Organic-Inorganic Perovskite Memory," ACS Nano, vol. 10, pp. 5413-8, May 24 2016.
    [45] Y. Liu, F. Li, Z. Chen, T. Guo, C. Wu, and T. W. Kim, "Resistive switching memory based on organic/inorganic hybrid perovskite materials," Vacuum, vol. 130, pp. 109-112, 2016.
    [46] J. Choi, S. Park, J. Lee, K. Hong, D. H. Kim, C. W. Moon, et al., "Organolead Halide Perovskites for Low Operating Voltage Multilevel Resistive Switching," Adv Mater, vol. 28, pp. 6562-7, Aug 2016.
    [47] Z. Xu, Z. Liu, Y. Huang, G. Zheng, Q. Chen, and H. Zhou, "To probe the performance of perovskite memory devices: defects property and hysteresis," J. Mater. Chem. C, vol. 5, pp. 5810-5817, 2017.
    [48] R. Waser, "Electrochemical and thermochemical memories," in 2008 IEEE International Electron Devices Meeting, 2008, pp. 1-4.
    [49] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, et al., "Metal–oxide RRAM," Proceedings of the IEEE, vol. 100, pp. 1951-1970, 2012.
    [50] K. D. Liang, C. H. Huang, C. C. Lai, J. S. Huang, H. W. Tsai, Y. C. Wang, et al., "Single CuO(x) nanowire memristor: forming-free resistive switching behavior," ACS Appl Mater Interfaces, vol. 6, pp. 16537-44, Oct 08 2014.
    [51] E. Lim and R. Ismail, "Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey," Electronics, vol. 4, pp. 586-613, 2015.
    [52] P. N. Murgatroyd, "Theory of space-charge-limited current enhanced by Frenkel effect," Journal of Physics D: Applied Physics, vol. 3, p. 151, 1970.
    [53] F.-C. Chiu, "A Review on Conduction Mechanisms in Dielectric Films," Advances in Materials Science and Engineering, vol. 2014, pp. 1-18, 2014.
    [54] D. Liu, M. K. Gangishetty, and T. L. Kelly, "Effect of CH3NH3PbI3thickness on device efficiency in planar heterojunction perovskite solar cells," J. Mater. Chem. A, vol. 2, pp. 19873-19881, 2014.
    [55] C. Liu, J. Fan, X. Zhang, Y. Shen, L. Yang, and Y. Mai, "Hysteretic Behavior upon Light Soaking in Perovskite Solar Cells Prepared via Modified Vapor-Assisted Solution Process," ACS Appl Mater Interfaces, vol. 7, pp. 9066-71, May 06 2015.
    [56] B. Joseph, K. G. Gopchandran, P. V. Thomas, P. Koshy, and V. K. Vaidyan, "A study on the chemical spray deposition of zinc oxide thin films and their structural and electrical properties," Materials Chemistry and Physics, vol. 58, pp. 71-77, 1999/02/25/ 1999.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE