簡易檢索 / 詳目顯示

研究生: 鍾承竣
Chung, Cheng-Chun
論文名稱: 利用熱氧方式沉積氧化披覆層於鍺金半金光檢測器以抑制其暗電流之相關研究
Suppressing the Dark Current in Ge MSM Photodetectors Achievable with Thermal Oxidation/Passivation Techniques
指導教授: 莊文魁
Chuang, Ricky-Wenkuei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 105
中文關鍵詞: 金半金光檢測器乾氧化學氣相沉積
外文關鍵詞: Ge, MSM, photodetector, dry oxidation, PE-CVD
相關次數: 點閱:73下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,使用鍺基板作為光檢測器的吸收層。由於文獻說明鍺的表面缺陷非常大。這因素會造成我們所製作而成的鍺金半金光檢測器擁有相當高的暗電流。
    為了抑制暗電流以提升鍺金半金光檢測器的表現,我們採用乾氧加上電漿輔助化學氣相沉積在鍺表面製作披覆氧化層。並以試片同時製作金氧半電容器和金氧半光檢測器。由金氧半電容器遲滯現象了解到乾氧方式有效的製作品質不錯的氧化層,也有效的抑制金半金光檢測器的暗電流。因此,熱氧化是一個適合於提升鍺金半金光檢測器功能的方法。而經由乾氧化加上披覆SiO2薄膜的方式所製作的N-type MIS光檢測器暗電流可降低至7.5x10-8A光暗電流比約可達435倍。

    In this thesis, metal-semiconductor-metal (MSM) infrared photodetectors (PDs) with light absorption taken place in the Ge substrate were fabricated and tested. Due to its low bandgap, many defects are typically present in the surface, which is one of primary reasons for observing a much larger dark current from the fabricated Ge MSM photodetector as compared to other semiconductors-based PDs. In order to reduce the numbers of interfacial and bulk defects, the combined methods of dry oxidation and plasma-enhanced chemical vapor deposition (PECVD) were used to separately deposit different passivation films on the Ge substrates and the performance evaluations were followed thereafter as the metal-insulator-semiconductor (MIS) capacitors and photodetectors were fabricated. The measurement results including the hysteresis observed from the MIS capacitors would later demonstrate that the aforementioned passivation technique effectively suppresses the magnitude of dark current associated with the Ge MSM PDs. Quantitatively, the lowest dark current obtained was on the average of ~7.5x10-8A and the best photo to dark current ratio of 435 was achieved as result of passivating the foregoing PDs on N-type Ge substrates with the dry oxide and PECVD-deposited SiO2 multilayer films.

    中文摘要……………………………………………………………I 英文摘要……………………………………………………………II 誌謝…………………………………………………………………IV 目錄…………………………………………………………………V 表目錄………………………………………………………………IX 圖目錄………………………………………………………………X 第一章-序論 1-1檢測器簡述1 1-2鍺和二氧化鍺(GeO2)相關特性5 1-3章節介紹6 參考文獻 7 第二章-背景理論 2-1金氧半電容器理論10 2-1-1反轉區電容的頻率效應12 2-1-2 MIS電容器結構的缺陷型態及其影響13 2-1-3氧化層缺陷對遲滯曲線方向的影響14 2-1-4平帶電容16 2-2金屬半導體接面理論17 2-2-1蕭特基接觸17 2-3金半金光檢測器理論21 2-3-1操作原理21 2-3-2幾何圖形的考量25 2-4金半金光檢測器的理論分析27 2-4-1暗電流27 2-4-2光響應度28 2-5量測系統29 2-5-1電容-電壓量測29 2-5-2吸收特性29 2-5-3電流電壓量測系統30 2-5-4光響應量測系統31 2-6製程機台系統32 2-6-1 PECVD電漿原理32 參考文獻 33 第三章-鍺金半金光檢測器 3-1鍺金半金光檢測器製造過程35 3-1鍺光檢測器的結果與討論38 第四章-利用熱氧覆蓋鍺的表面 4-1熱氧的機制41 4-1-1熱氧的反應41 4-2氧化的過程43 4-3不同的薄膜覆蓋在二氧化鍺上44 4-4未掺雜鍺MIS光檢測器和金氧半電容器45 4-4-1氧化完沉積氮化矽和二氧化矽和非晶矽45 4-4-2鎳/披覆層/二氧化鍺/未掺雜鍺電容器48 4-5 N型鍺MIS光檢測器和金氧半電容器60 4-5-1鎳/披覆層/二氧化鍺/N型鍺電容器 63 4-6 P型鍺MIS光檢測器和金氧半電容器75 4-6-1鎳/披覆層/二氧化鍺/P型鍺電容器 78 4-6-2 P型鍺電容器SIMS分析88 4-7 P型和N型金氧半電容器遲滯現象90 4-7-1介面缺陷的計算90 4-8未掺雜鍺和N型鍺MIS光檢測器暗電流的比較96 4-9結論99 參考文獻 100 第五章-結論與未來工作 5-1結論102 5-2未來工作104 參考文獻 105

    Chapter 1
    [1]R. A. Soref, “Silicon-based optoelectronics,” IEEE Proceedings, vol. 81, pp. 1687-1706, 1993.
    [2]R. W. Chuang and T. K. Hung, “Suppressing the Dark Current in Si/SiGe Heterostructural MSM Infrared Photodetectors Achievable through Anodic and Photochemical Vapor-Deposited Oxidation/Passivation Techniques,” 國立成功大學微電子工程研究所碩士論文, 2009.
    [3]M. Salib, L. Liao, R. Jones, M. Morse, A. Liu, D. Samara-Rubio, D. Alduino, and M. Paniccia, “Silicon Photonics,” Intel Technol. J., vol. 8, p. 1442, 2004.
    [4]S. M. Sze, High-Speed Semiconductor Devices, New York: Wiley, pp. 28-33, 1990.
    [5]M. Bauer, C. Schöllhorn, K. Lyutovich, E. Kasper, M. Jutzi, and M. Berroth, “High Ge content photodetectors on thin SiGe buffers,” Materials Science and Engineering B, vol. 89, pp. 77-83, 2002.
    [6]C. Li, C. J. Huang, B. Cheng, Y. Zuo, J. Yu, and Q. Wang, “SiGe/Si resonant-cavity-enhanced photodetectors for 1.3 µm operation fabricated using wafer bonding techniques,” Journal of Applied Physics, vol. 92, pp. 17-18, 2002.
    [7]J. Wang, W. Y. Loh, K. T. Chua, H. Zang, Y. Z. Xiong, S. M. F. Tan, M. B. Yu, S. J. Lee, G. Q. Lo, and D. L. Kwong, “Low-Voltage High-Speed (18 GHz/1 V) Evanescent-Coupled Thin-Film-Ge Lateral PIN Photodetectors Integrated on Si Waveguide,” IEEE Photon. Technol. Lett., vol. 20, pp. 1485-1487, 2008.
    [8]L. Vivien, J. Osmond, J. Fédéli, and D. Marris-Morini, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveg- uide,” Optics Express, vol. 17, pp. 6252-6257, 2009.
    [9]T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, and D. Rubin, “31GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Optics Express, vol. 15, pp. 13965-13971, 2007.
    [10]D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett., vol. 95, p. 261105, 2009.
    [11]P. S. Kuo, Y. C. Fu, C. C. Chang, C. H. Lee, and C. W. Liu, “Dark current reduction of Ge MOS photodetectors by high work function electrodes,” Electron. Lett., vol. 43, pp. 1113-1114, 2007.
    [12]C. Xue, H. Xue, B. Cheng, W. Hu, Y. Yu, and Q. Wang, “1 x 4 Ge-on-SOI PIN Photodetector Array for Parallel Optical Interconnects,” Journal of Lightwave Technol., vol. 27, pp. 5687-5689, 2009.
    [13]B. C. Hsu, S. T. Chang , C. C. Lai, P. S. Chen, and C. W. Lin, “High Efficint 820nm Mos Ge Quantum Dot Photodetectors for Short Reach Integrated Optical Receivers with 1300 and 1550 nm Sensitivity,” IDEM Tech. Dig., pp. 91-94, 2002.
    [14]K. Ang, S. Zhu, M. Yu, G. Lo, and D. Kwong, “High-Performance Waveguided Ge-on-SOI Metal–Semiconductor–Metal Photodetectors With Novel Silicon–Carbon (Si:C) Schottky Barrier Enhancement Layer,” IEEE Photon. Technol. Lett., vol. 20, pp. 754-756, 2008.
    [15]J. Oh, S. K. Banerjee, and J. C. Campbell, “Metal Germanium Metal Photodetectors on Heteroepitaxial Ge-on-Si With Amorphous Ge Schottky Barrier Enhancement Layers,” IEEE Photon. Technol. Lett., vol. 16 , pp. 581-583, 2004.
    [16]K. Prabhakaran and T. Ogino, “Oxidation of Ge(100) and Ge(111) surfaces : an UPS and XPS study,” Surface Science, vol. 325, pp. 263-271, 1995.
    [17]K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, “Thermal decomposition pathway of Ge and Si oxides: observation of a distinct difference,” Thin Solid Films, vol. 369, pp. 289-292, 2000.
    Chapter 2
    [1]B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon,” IEEE Trans. Electron Dev, vol. 127, pp. 979-981, 1980.
    [2]K. D. Schroder, Semiconductor Material and Device Characterization, 2rd Edition , New York :Wiley, 1988.
    [3]E. F. Nicollian and J. R. Brews, MOS Physics and Technology, New York: Wiley , 2003.
    [4]E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, New York: Oxford University Press , 1998.
    [5]S. M. Sze, Semiconductor Device Physics and Technology, New York : Wiley, 1985.
    [6]D. A. Neamen, Semiconductor Physics and Devices Basic Principles, 3rd Edition, New York: McGraw-Hill, p. 327-329, 2003.
    [7]R. W. Chuang and T. K. Hung, “Suppressing the Dark Current in Si/SiGe Heterostructural MSM Infrared Photodetectors Achievable through Anodic and Photochemical Vapor-Deposited Oxidation/Passivation Techniques,” 國立成功大學微電子工程研究所碩士論文, 2009.
    [8]V. L. Rideout, “A Review of the Theory Technology and Applications of Metal-Semiconductor Rectifiers,” Thin Solid Films, vol. 48, pp. 261-291, 1978.
    [9]S. M. Sze, Semiconductor Device Physics and Technology, New York: Wiley, p. 278, 1985.
    [10]S. M. Sze, D. J. Coleman JR., and A. Loya, “Current Transport in Metal-Semiconductor-Metal (MSM) Structures,” Solid-State Elect- ron., vol. 14, pp. 1209-1218, 1971.
    [11]P. Bhattacharya, Semiconductor Optoelectronic Devices, N.J.: Prenti- ce Hall, 1994.
    [12]S. V. Averine, Y. C. Chan, and Y. L. Lam, “Geometry Optimization of Interdigitated Schottky-Barrier Metal-Semiconductor-Metal Photo- diode Structures,” Solid-State Electronics, vol. 45, pp. 441-446, 2001.
    [13]J. Burm, K. I. Litvin, W. J. Schaff, and L. F. Eastman, “Optimization of High-speed Metal-Semiconductor-Metal Photodetectors,” IEEE Photon. Technol. Lett., Vol. 6, pp. 722-724, 1994.
    [14]M. S. Tyagi, Metal-Semiconductor Schottky Barrier Junctions and Their Application, New York: Plenum Press, p. 20, 1984.
    [15]D. A. Neamen, Semiconductor Physics and Devices Basic Principles, New York: McGraw-Hill, 3rd Edition, p. 474, 2003.
    [16]R. W. Chuang and Z. L. Liao, “Optical Modulation and Photodetector in Silicon Photonics,” 國立成功大學微電子工程研究所博士論文, p. 39, 2009.
    Chapter 4
    [1]http://nanosioe.ee.ntu.edu.tw/semilab/exp/exp4.ppt.
    [2]http://tw.myblog.yahoo.com/jw!6ll5UeGCFQUo00va6Dk_C4Sv/article?mid=187.
    [3]W. Bai, N. Lu, A. P. Ritenour, M. L. Lee, D. A. Antoniadis, and D. L. Kwong, “The Electrical Properties of HfO2 Dielectric on Germanium and the Substrate Doping Effect,” IEEE Trans. on Electron Devices, vol. 53, pp. 2551-2558, 2006.
    [4]T. Hosoi, K. Kutsuki, G. Okamoto, M. Saito, T. Shimura, and H. Watanabe, “Origin of flatband voltage shift and unusual minority carrier generation in thermally grown GeO2/Ge metal oxide semiconductor devices,” Appl. Phys. Lett., p. 202112, 2009.
    [5]G. Philip and B. E. Tanner, Slow traps in mos structures: A Study of High Field and Plasma Induced Trapping in the Si-Sio2 Interface Region, Australia: Griffith University, 1996.
    [6]S. K. Zhang, Z. W. Fu, L. Ke, F. Lu, Q. Z. Qin, and X. Wang, “Properties of interface state at Ta2O5/n-Si interfaces,” Journal of Applied Physics, vol. 84, pp. 335-338, 1998.
    [7]A. Goetzberger and J. C. Irvin, “Low-temperature hysteresis effects
    in metal-oxide silicon capacitors caused by surface -state trapping,” IEEE Trans. Electron Dev., vol. 15, pp. 1009-1014, 1968.
    [8]D. K. Schroder, Semiconductor Material Device and Characterization, New York: Wiley, pp. 373-377, 1998.
    [9]W. A. Hill and C. C. Coleman, “A Single Frequency Approximation for Interface-State Density Determination,” Solid-State Electron., vol. 23, pp. 987-993, 1980.
    [10]A. Tolpadi and R. S. Srivastava, “Single-frequency Method for the Determination of Interface State Density,” American Institude of Physics, vol. 63, pp. 5419-5425, 1992.
    [11]W. Bai, N. Lu, A. P. Ritenour, M. L. Lee, D. A. Antoniadis, and D. L. Kwong, “The Electrical Properties of HfO2 Dielectric on Germanium and the Substrate Doping Effect,” IEEE Trans. Electron Dev., vol. 53, pp. 2551-2558, 2006.
    [12]C. C. Cheng, C. H. Chien, G. L. Luo, Y. T. Ling, R. D. Chang, C. C. Kei, C. N. Hsiao, J. C. Liu, and C. Y. Chang, ”Effects of Minority- Carrier Response Behavior on Ge MOS Capacitor Characteristics: Experimental Measurements and Theoretical Simulations,” IEEE Trans. Electron Dev., vol. 56, pp. 1118-1127, 2009.
    [13]K. Kita, S. Suzuki, H. Nomura, T. Takahashi, T. Nishimura, and A. Toriumi, “Direct Evidence of GeO Volatilization from GeO2/Ge and Impact of Its Suppression on GeO2/Ge Metal Insulator Semicondu- tor Characteristics,” Japanese Journal of Applied Physics, vol. 47, pp. 2349–2353, 2008.
    Chapter 5
    [1]J. D. Hwang, P. C. Yao, and E. H. Zhang, “The Study of Ge Schottky photodetector with a-Si:H capping layer,” 大葉大學電機工程學系碩士論文, 2009.

    下載圖示 校內:2012-08-26公開
    校外:2013-08-26公開
    QR CODE