簡易檢索 / 詳目顯示

研究生: 鄭光茗
THEI, KONG-BENG
論文名稱: 無邊界接觸窗、矽化金屬及非矽化金屬電阻結構在極大型積體電路之應用
Investigation of Borderless Contact, Silicide and Non-Silicide Resistor Structures in Sub-Quarter Micron ULSI CMOS Applications
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 61
中文關鍵詞: 非矽化金屬電阻無邊界接觸窗極大型積體電路矽化金屬
外文關鍵詞: borderless contact, non-silicide resistor, ULSI, CMOS, silicide
相關次數: 點閱:85下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們將討論無邊界接觸窗與自行對準矽化物的製程及矽化金屬與非矽化金屬電阻在毫微米以下積體電路之應用。
    首先,吾人將開發無邊界接觸窗(borderless contact)與自行對準矽化物的製程並研究其特性。採用較低溫之化學氣相沈積法(CVD)形成的氮氧化矽層(SiOxNy)做為蝕刻之終止層。並研究增加的雙重n+ 及p+ 源/汲極離子佈植法對元件特性之影響;所增加的雙重n+ 及p+ 離子佈植源/汲極(DDD)可以有效的降低遺漏電流,這些遺漏電流大部份是來自無邊界接觸窗,其造成電流由淺溝渠隔離結構遺漏;因此,須增大無邊界接觸窗之蝕刻製程。此外,採用低溫且快速沉積之方法,並不會影響所使用矽化金屬層的片電阻 (sheet resistance)亦不會產生凝聚或不均勻的現象。
    接著,吾人提出雙重離子佈植法(DII)在鈦金屬矽化合物之應用。此雙重離子佈植法不須增加光罩,而是結合非晶矽化鍺(或砷)離子佈植法(PAI)及矽離子混合法(Si ion-mixing)之技術。採用此雙重離子佈植法的技術,可以獲得比較低且穩定的n+ 及p+ 閘極及源/汲極矽化鈦片電阻值。再者,雙重離子佈植法的片電阻值會比單一非晶矽化鍺(或砷)離子佈植法或矽離子混合法低5% 至10%。此外,雙重離子佈植法中的矽離子混合法可以有效的降低遺漏電流。再者,應用非晶矽化鍺(或砷)離子佈植法在鈷金屬矽化合物之探討。吾人亦採用雙重離子佈植法之鈦及鈷金屬矽化合物成功的開發0.2mm互補式金屬半導體(CMOS)元件。
    本文亦提出應用於混合訊號電路非矽化金屬多晶矽層的電阻值特性之研究。基於前文所述,非矽化金屬多晶矽層的電阻兩端的矽化金屬鈦(或鈷)亦採用無邊界接觸窗結構之設計。吾人提出一簡單的理論模式用於分析及計算非矽化金屬多晶矽層的電阻參數,例如多晶矽電阻電性寬度(DW)、介面電阻值(Rinterface)及本體電阻值(Rbulk)。在毫微米積體電路中,此理論模式幫助電路設計者精確的計算非矽化金屬多晶矽層的電阻值。再者,吾人亦提出及探討非矽化金屬多晶矽層電阻的電壓係數(VCR)、電阻的溫度係數(TCR)及電阻匹配(Rmis)。實驗結果顯示,以上的電阻模式與實驗數據吻合。
    接著,本論文亦提出一新電阻結構以應用於毫微米以下的積體電路之設計。由前理論模式得知,多晶矽層電阻的電壓係數(VCR)受到介面電阻值很大的影響,此一新電阻結構可有效的降低多晶矽層的介面電阻值。此一新電阻結構具有較大的有效介面寬度,可用以抑制多晶矽層電阻的電壓係數受到介面電阻值的影響程度。
    另一方面,我們亦研究在不同的電流及溫度應力效應下,非矽化金屬多晶矽層電阻的可靠度。由實驗得知最大的電流密度會隨著非矽化金屬多晶矽層電阻寬度的增加而增加,多晶矽層電阻的失敗時間(TTF)會隨著電流及溫度應力的增加而減短。吾人提出一個經驗方程式用以預測多晶矽層電阻之最大電流密度及疲勞壽命。在一固定的直流電流密度(1.0×106A/cm2)及不同的溫度下,計算出n+ 及 p+ 多晶矽層電阻的活化能(Ea)分別為0.67及0.48 eV。再者,在一固定的溫度(473K)及不同的直流電流密度下,計算出n+ 及 p+ 多晶矽層電阻的電流依賴因子分別為1.57x10-5及1.30x10-5 cm2/A。因此,可以精確的提供電路設計者及製程工程師對於多晶矽層可靠度之探討及預測最大電流密度與疲勞壽命。

    In this dissertation, we will study borderless contact (BLC) process of the silicide and non-silicide technologies for sub-quarter micron ULSI CMOS applications. The characteristics of a new and improved borderless contact (BLC) are studied. A low-temperature and high deposition rate CVD-oxynitride (SiOxNy) film is used to act as the selective etching stop layer. The additional n+ and p+ source-drain double implant structure (DIS) are employed in the studied device. The additional n+ and p+ DIS can reduce the junction leakage current, which is usually enhanced by BLC etching near the edge of shallow trench isolation (STI). The process window is enlarged. Furthermore, the employed low-thermal oxynitride and high deposition rate can improve the salicide thermal stability and avoid the salicide agglomeration. In addition, double ion-implant (DII) Ti-salicide with the arsenic pre-amorphization implantation (PAI) and Si ion-mixing implant have been developed successfully and studied. The DII technique is combined by germanium (or arsenic) PAI and Si ion-mixing implant without additional lithography process. The sheet resistances both of n+ and p+ polysilicon resistors with DII process are decreased especially in the narrow gate width regime. Based on this technology, the good performances of uniform Ti-silicide formation, low and narrow distribution of sheet resistances both on n+/p+ poly-gate and source/drain diffusion layers are obtained. In addition, for DII process, the sheet resistances are lowered by 5 to 10% than those of PAI or Si ion-mixing only. Furthermore, the junction leakage current is reduced when the Si ion-mixing process is employed. Experimentally, based on the studied PAI and Si ion-mixing techniques, high-performance 0.2mm CMOS devices are fabricated successfully.
    The characteristics of non-silicide polysilicon resistors in sub-quarter micron CMOS mixed-mode applications are reported in this thesis. Based on the presented sub-quarter micron CMOS borderless contact, both n+ and p+ polysilicon resistors with Ti- and Co-silicide self-aligned process are used at the ends of each resistor. A simple and useful model is proposed to analyze and calculate some important parameters of polysilicon resistors including electrical delta W (DW), interface resistance Rinterface, and bulk sheet resistance Rbulk. This approach can substantially help engineers in designing and fabricating the precise polysilicon resistors in sub-quarter micron CMOS technology. In addition, the characteristics of voltage coefficient of resistor (VCR), temperature coefficient of resistor (TCR), and resistor mismatching (Rmis) are also studied.
    In addition, a new and improved structure of polysilicon resistor for sub-quarter micron CMOS device applications is demonstrated and studied. A simple model is proposed to analyze its important parameters such as the voltage-dependent bulk sheet resistance, interface resistance, and VCR. An anomalous voltage-dependent characteristic of overall resistance is found mainly resulting from the existence of interface resistance. The proposed structure of polysilicon resistor with a larger effective width of interface region shows substantial suppression of the voltage-dependent resistance deviation caused by interface resistance. The reduction of VCR value is also obtained for the new structure. Consequently, from experimental results, the proposed structure can be used in precise (lower VCR) polysilicon resistors.
    The effects of electrical and temperature stress on polysilicon resistors reliability in sub-quarter micron CMOS applications have been studied. The maximum current density (Jmax) is increased with the decrease of polysilicon resistor width W. The time-to-fail (TTF) value of the polysilicon resistor is decreased with increasing the electrical and temperature stress. A simple empirical formula is proposed in this study to predict the Jmax and lifetime of polysilicon resistors. Under a fixed dc current density (1.0×106A/cm2), the activation energies (Ea) for n+ and p+ polysilicon resistors at different temperature are 0.67 and 0.48 eV, respectively. In addition, at a fixed temperature of 473K, the current factors for n+ and p+ polysilicon resistors are 1.57x10-5 and 1.30x10-5 cm2/A, respectively, under different dc current densities. Therefore, these precise reliability performances offer the promise for ULSI design and fabrication.

    Contents Abstract (Chinese) Abstract (English) Table Lists Figure Captions Chapter 1. Introduction 1.1. Brief history of CMOS devices ...................... 1 1.2. Organization of dissertation objective ............. 2 Chapter 2. Borderless Contact Structure in ULSI CMOS Devices 2.1. Introduction ....................................... 5 2.2. Design and fabrication process of BLC and DIS ...... 6 2.3. Experimental results and discussion ................ 7 2.3.1. Electrical performance of BLC design process ... 7 2.3.2. Electrical performance of DIS design process ... 9 2.3.3. CMOS devices characteristic of BLC and DIS ..... 9 2.3.4. 6T-SRAM chip characteristics ................... 9 2.4. Summary ............................................ 10 Chapter 3. Double Ion-Implant (DII) Ti-Salicide and Pre-Amorphization implant (PAI) Co-Salicide Resistor Technology 3.1. Introduction ....................................... 12 3.2. Design and fabrication process of DII .............. 13 3.3. Experimental results and discussion ................ 14 3.3.1. The sheet resistance of TiSi2 and CoSi2 ..... 14 3.3.2. Reverse junction leakage current ............ 17 3.3.3. I-V characteristics of MOSFETs .............. 18 3.4. Summary ............................................ 19 Chapter 4. Characteristics of Non-Silicide Polysilicon Resistors 4.1. Introduction ....................................... 20 4.2. Design and fabrication process of polysilicon resistors .21 4.3. Experimental results and discussion ................ 22 4.3.1. D.C. characteristics of non-silicided polysilicon resistors .. 22 4.3.1.-1. D.C. equivalent circuit model ............ 22 4.3.1.-2. Voltage coefficient of resistor (VCR) .... 25 4.3.1.-3. Temperature coefficient of resistor (TCR) .. 28 4.3.1.-4. Resistor mis-matching (Rmis) ............. 29 4.3.2. A new improved structure of non-silicided polysilicon resistor .30 4.4. Summary ............................................ 34 Chapter 5. Characteristics of Polysilicon Resistor Reliability 5.1. Introduction ....................................... 36 5.2. Experimental results and discussion ................ 37 5.2.1. Reliability model under electrical and temperature stress. 37 5.2.2. Extraction of activation energy (Ea) ........... 39 5.2.3. Extraction of current factor (n) ................... 40 5.3. Summary ................................................ 41 Chapter 6. Conclusion and Prospect 6.1. Achievement ............................................. 42 6.2. Future work ............................................. 44 Appendix References Publication List Vita

    [1] K. C. Sawaswat and F. Mohammadi, “Effect of scaling of interconnects on the time delay of VLSI circuits,” IEEE J. Solid-State Circuits, vol. SC-17, no. 2, pp. 275, 1982.
    [2] D. B. Scott, W. R. Hunter, and H. Shichijo, “ Transmission line model for silicide diffusion: Impact on the performance of VLSI circuits,” IEEE Trans. Electron Devices, vol. ED-29, no. 4, pp. 651, 1982.
    [3] C. K. Lau, Y. C. See, D. B. Scott, J. M. Bridges, S. M. Perna, and R. D. Davies, “Titanium disilicide self-aligned source/drain+gate technology,” in IEDM Tech. Dig., pp. 714-716, 1982.
    [4] R. Singh, and A. B. Bhattacharyya, “Matching properties of linear MOS capacitors,” IEEE Trans. Circ. and Syst., vol. 36, no. 3, pp. 465–467, 1989.
    [5] B. Davari, W. H. Chang, K. E. Petrillo, C. Y. Wong, D. Moy, Y. Taur, M. R. Wordeman, J. Y. C. Sun, C. C. H. Hsu, and M. R. Polcari, “A high-performance 0.25-mm CMOS technology: II-technology,” IEEE Trans. Electron Devices, vol. 39, no. 4, pp. 967-974, 1992.
    [6] V. Vasudevan and J. Vasi, “ A two-dimensional numerical simulation of oxide charge buildup in MOS transistors due to radiation,” IEEE Trans. Electron Devices, vol. 41, pp. 383-390, Mar., 1994.
    [7] S. Mahapatra, C. D. Parikh, V. R. Rao, C. R. Viswanathan, and J. Vasi, “Device scaling effects on hot carrier induced interface and oxide-trapped charge distributions in MOSFETs,” IEEE Trans. Electron Devices, vol. 47, pp. 789-796, Apr., 2000.
    [8] H. Shichijo, “ A re-examination of practical performance limits of scaled n-channel and p-channel MOS devices for VLSI,” Solid-State Electron., vol. 26, no. 10, pp. 969-986, 1983.
    [9] K. K. Ng, and W. T. Lynch, “The impact of intrinsic series resistance on MOSFET scaling,” IEEE Trans. Electron Devices, vol. ED-34, no. 3, pp. 503-511, 1987.
    [10] C. S. Oh, B. Davari, W. Chang, D. Moy, and Y. Taur, “Simultaneous formation of shallow-deep stepped source/drain for sub-micron CMOS,” in Proc. VLSI Tech. symp., pp. 73-74, 1988.
    [11] A. E. Morgan, E. K. Broadbent, M. Delfino, B. Coulman, and D. K. Sadana, “ Characteristics of self-aligned cobalt silicide process,” J. Electrochem. Soc., vol. 134, no. 4, 1987.
    [12] C. Y. Lu, J. J. Sung, C. H. D. Yu. “ Submicometer salicide CMOS devices with self-aligned shallow/deep junctions,” IEEE Electron Device Lett., vol. 10, no. 11, pp. 487-489, 1989.
    [13] J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss, “ Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and CoSi2,” IEEE Trans. Electron Devices, vol. 38, no. 2, pp. 262-271, 1991.
    [14] Z. G. Xiao, G. A. Rozgonyi, C. A. Canovai, and C. M. Osburn, “Agglomeration of cobalt silicide films,” in Proc. Mater., Res. Soc. Symp., vol. 202, pp. 101, 1991.
    [15] A. C. Berti and V. Bolkhovsky, “ A manufacturable process for the formation of self aligned cobalt silicide in submicronmeter CMOS technology,” VMIC Conf. Dig., pp. 267-273, 1992.
    [16] T. Yamazaki, K. Goto, T. Fukano, Y. Nara, T. Sugii, and T. Ito, “21 ps switching 0.1-mm-CMOS at room-temperature using high performance Co salicide process,” in IEDM Tech. Dig., pp. 906-909, 1993.
    [17] K. Goto, T. Yamazaki, A. Fushida, S. Inagaki, and H. Yagi, “Optimization of salicide process for 0.1-mm CMOS devices,” in Symp. VLSI Tech., pp. 119-120, 1994.
    [18] W. T. Sun, M. C. Liaw, and C. C. H. Hsu, “Suppresion of Cobalt silicide agglomeration using nitrogen (N2+) implantation,” IEEE Electron Devices Lett., vol. 19, no. 5, pp. 163-166, 1998.
    [19] R. Liu, D. S. Williams, and W. T. Lynch, “A study of the leakage mechanisms of silicided n+/p junctions,” J. Appl. Phys., vol. 63, no. 6, pp. 1990-1999, 1988.
    [20] J. Lin, S. Banerjee, J. Lee, and C. Teng, “ Soft breakdown in titanium-silicided shallow source/drain junctions,” IEEE Electron Devices Lett., vol. 11, no. 5, pp. 191-193, 1990.
    [21] H. C. ChengM. H. Juang, C. T. Lin, and L. M. Huang, “A silicidation-induced process consideration for forming scaled-down silicided junction,” IEEE Electron Devices Lett., vol. 15, no. 9, pp. 342-344, 1994.
    [22] C. T. Huang, T. F. Lei, C. H. Chu, and S. H. Shvu, “ The influence of Ge-implantation on the electrical characteristics of the ultra-shallow junction formed by using silicide as a diffusion source, ” IEEE Electron Device Lett., vol. 17, pp. 88-90, Mar., 1996.
    [23] F. L. Via, and E. Rimini, “Electrical characterization of ultra-shallow junction formed by diffusion from a CoSi2 layer, ” IEEE Trans. Electron Devices, vol. ED-44, no. 4, pp. 526-534, 1997.
    [24] H. D. Lee, S. G. Lee, S. H. Lee, Y. J. Lee, and J. M. Hwang, “ Characterization of corner-induced leakage current of a shallow silicided n+/p junction for quarter-micon MOSFET’s,” Jpn. J. Appl. Phys., vol. 37, no. 5, pp. 1179-1183, 1998.
    [25] H. D. Lee and J. M. Hwang, “Accurate extraction of reverse leakage current components of shallow silicided p+-n junction for quarter and subquarter-micron MOSFET’s,” IEEE Trans. Electron Devices, vol. 45, no. 8, pp. 1848-1850, 1998.
    [26] K. I. Goto, A. Fushida, J. Watanabe, T. Sukegawa, Y. Tada, T. Nakamura, T. Yamazaki, and T. Sugii, “ A new leakage mechanism of Co salicide and optimized process conditions,” IEEE Trans. Electron Devices, vol. 46, no. 1, pp. 117-123, 1999.
    [27] H. D. Lee, and Y. J. Lee, “Arsenic and phosphorus double ion implanted source/drain junction for 0.25- and sub-0.25-mm MOSFET technology,” IEEE Electron Devices Lett., vol. 20, no. 1, pp. 42-44, 1999.
    [28] S. Subbanna, D. Harame, B. Chappell, J. Comfort, B. Davari, R. Franch, D. Danner, A. Acovic, S. Brodsky, J. Gilbreth, D. Robertson, J. Malinowski, T. Lii, and G. Shaidi, “A novel borderless contact/interconnect technology using aluminum oxide etch stop for high performance SRAM and logic,” in IEDM Tech., pp. 441-444, 1993.
    [29] M. Gallagher, C. Ebel, G. MacDougall, and T. Weeks, “A novel, borderless metal-to-diffusion contact technique,” in IEEE/SEMI, Advanced Semiconductor Manufacturing Conference, pp. 13-15, 1995.
    [30] M. Gallagher, C. Ebel, J. Fournier, T. Weeks, G. MacDougall, T. Knotts, C. Lam, and K. Peterson, “ Control schemes using emission endpoint in a borderless oxide contact etch process,” in IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 333-336, 1996.
    [31] K. Noda, K. Matsui, K. Inoue, T. Itani, H. Iwasaki, K. Urabe, H. Miyamoto, K. Tokashiki, H. Kawamoto, M. Satoh, K. Yoshida, K. Kishimoto, K. Koyanagi, and T. Tanigawa, “A 2.9 mm2 embedded SRAM cell with Co-salicide direct-strap technology for 0.18 mm high performance CMOS logic,” in IEDM Tech. Dig., pp. 847-850, 1997.
    [32] H. Koga, T. Matsuki, N. Kasai, T. Hayashi, Y. Saito, K. Nakajima, K. Tokunaga, Y. Yamada, N. Onoda, K. Tokashiki, A. Nishizawa, H. Kawamoto, and K. Koyama, “Two-dimensional borderless contact pad technology for a 0.135 mm2 4-gigabit DRAM cell,” in IEDM Tech. Dig., pp. 25-28, 1997.
    [33] C. H. Diaz, M. Chang, W. Chen, M. Chiang, H. Su, S. Chang, P. Lu, C. Hu, K. Pan, C. Yang, L. Chen, C. Su, C. Wu, C. H. Wang, C. C. Wang, J. Shih, H. Hsieh, H. Tao, S. Jang, M. Yu, S. Shue, B. Chen, T. Chang, C. Hou, B. K. Liew, and K. Lee, “A 0.15 mm CMOS foundry technology with 0.1 mm devices for high performance applications,” Symposium on VLSI Technology, pp. 146-147, 2000.
    [34] B. Descouts, K. Barla, J. Guelen, A. Margain, C. Verove, and N. Loof, “Characterization of silicon nitride films for borderless contact applications,” VMIC Conf., pp. 640-641, 1998.
    [35] W. C. Liu, K. B. Thei, W. C. Wang, H. J. Pan, S. G. Wuu, M. T. Lei, C. S. Wang, and S. Y. Cheng, “A new and improved borderless contact (BLC) structure for high-performance Ti-salicide in sub-quarter micron CMOS devices,” IEEE Electron Device Lett., vol. 21, no. 7, pp. 344-346, 2000.
    [36] K. B. Thei, H. M. Chuang, K. H. Yu, W. C. Liu, R. C. Liu, K. W. Lin, C. W. Su, C. S. Ho, S. G. Wuu, and C. S. Wang, “On the high-performance Ti-salicide ULSI CMOS devices prepared by a borderless contact (BLC) technique and double implant structure (DIS),” Semicond. Sci. Technol., pp. 1-6, 17, 2002
    [37] M.E. Alperin, T.C. Hollaway, R. A. Haken, C. D. Gosmeryer, R. V. Kanaugh, and W. D. Parmantie, “Development of the self-aligned titanium silicide process for VLSI applications,” IEEE Trans. Electron Devices, vol. 32, no. 2, pp. 141-149, 1985.
    [38] A. K. Sinha, “Refractory, “ Refractory metal silicides for VLSI applications,” J. Vac. Sci., and Technol., pp. 778, 1981.
    [39] I. Sakai, H. Abiko, H. Kawaguchi, T. Hirayama, L. E. G. Johansson, and K. Okabe, “A new salicide process (PASET) for sub-half micron CMOS,” Symposium on VLSI Technology , pp. 66-67, 1992.
    [40] J. Foerstner, J. Jones, M. Huang, B. -Y. Hwang, M. Racanelli, and J. Tsao, "Behavior of contact-silicided TFSOI gate-structure," n Proc. IEEE Int. SOI Conf., pp. 86-87, 1993.
    [41] T. Mogami, H. Wakabayashi, Y. Saito, T. Tatsumi, T. Matsuki, and T. Kunio, “Low-Resistance Self-Aligned Ti-Silicide Technology for Sub-Quarter Micron CMOS Devices,” IEEE Trans. Electron Devices, vol. 43, no. 6, pp. 932-939, 1996.
    [42] J. Y. Tsai and S. E. C. Yeh, “Device Degradation Associated with Pre-Amorphization Implant (PAI) of the Ti Salicide Process,” Proc. IEEE Electron Int. VLSI Tech., pp. 28-33, 1997.
    [43] T. C. Hsiao, P. Liu, and J. C. S. Woo, “An Advanced Ge Preamorphization Salicide Technology for Ultra-Thin-Film SOI CMOS Devices,” IEEE Electron Device Lett., vol. 18, no. 18, pp. 309-311, 1997.
    [44] P. Liu, T. C. Hsioa, and J. C. S. Woo, “A low Thermal Budget Self-Aligned Ti Silicide Technology Using Germanium Implantation for Thin-Film SOI MOSFET’s,” IEEE Trans. Electron Devices, vol. 45, no. 6, pp. 1280-1286, 1998.
    [45] Jorge A. Kittl, Qi-Zhong Hong, Chih-Ping Chao, Ih-Chin Chen, Ning Yu, Sean O'Brien, and M. Hanratty, “Salicides for 0.10mm gate lengths: a comparative study of one-step RTP Ti with Mo doping, Ti with pre-amorphization and Co process,” Symposium on VLSI Technology Digest of Technical papers, 1992, pp.103 104.
    [46] QiuXia Xu and Chenming Hu, “ Novel Ti-SALICIDE process with low resistivity for sub-0.2mm CMOS technology,” Solid-State and Integrated Circuit Technology, 1998. Proceedings, 1998 , pp. 47 –51.
    [47] Ping Liu, Tommy C. Hsioa, and Jason C. S. Woo, “A low Thermal Buget Self-Aligned Ti Silicide Technology Using Germanium Implantation for Thin-Film SOI MOSFET’s,” IEEE Trans. Electron Devices, vol. 45, no. 6, pp. 1280-1286, 1998.
    [48] Robert Beyers, “ Titanium disilicide formation on heavily doped silicon substrates,” J. Appl. Phys., vol. 61, pp. 5110-5117, 1987.
    [49] Woo-Tag Kang, Jeong-Seok Kim, Kang-Yoon Lee, Yoo-Cheol Shin, Tae-Heon Kim, Yong-Jik Park, and Jong-Woo Park, “ The leakage current improvement in an ultrashallow junction NMOS with Co silicided source and drain,” IEEE Electron Device Lett., vol. 21, no. 1, pp. 9-11, 2000.
    [50] J. Lutze, G. Scott, and M. Manley, “ Transistor off-state leakage current induced by TiSi2 pre-amorphizing implant in a 0.20 mm CMOS process,” IEEE Electron Device Lett., vol. 21, no. 4, pp. 155-157, 2000.
    [51] A. E.-Raid, and L. A. Bhutta, “Lightly trimming the hybrids,” IEEE Circuits and Devices, vol. 9, no. 7, pp. 30-34, 1993.
    [52] M. Tanimoto, J. Murota, Y. Ohmori, and N. Ieda, “A novel MOS PROM using a highly resistive poly-Si resistor,” IEEE Trans. Electron Devices, vol. 27, pp. 517-520, 1981.
    [53] G. Eradi, “ A precision trim technique for monolithic analog circuits,” ISSCC Dig. Tech. Papers. Pp. 192-193, 1975.
    [54] K. W. Paik, “Studies on thin film integral passive components for mixed mode multichip module (MCM) applications”, IEEE/CPMT Electronic Manufacturing Technology Symposium, pp. 365-368, 1996.
    [55] C. H. Mastrangelo, J. H. Yeh, and R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Elect. Devices, vol. 39, no. 6, pp. 1363-1375, 1992.
    [56] N. R. Swart and A Nathan, “Reliability study of polysilicon for microhotplates,” in Proc. IEEE Solid State Sensor and Actuator Workshop, June 13-16, pp. 119-122, 1994.
    [57] K. Kato, T. Ono, and Y. Amemiya, “Electrical trimming of poly-crystalline silicon resistors and its application to analog IC’s,” IEEE Trans. Electron Devices, vol. ED-27, no. 11, pp. 2194-2205, 1980.
    [58] W. A. Lane and G. T. Wrixon, “The design of thin-film polysilicon resistors for analog IC applications,” IEEE Trans. Electron Devices, vol. ED-36, no. 4, pp. 738-744, 1989.
    [59] D. W. Lee, T. M. Roh, H. S. Park, J. Kim, J. G. Koo, and D. Y. Kim, “Fabrication technology of polysilicon resistors using novel mixed process for analogue CMOS applications,” Electron Lett., vol. 35, no. 7, pp. 603-604, 1999.
    [60] C. Wann, J. Harrington, R. Mih, S. Biesemans, K. Han, R. Dennard, O. Prigge, C. Lin, R. Mahnkopf, and B. Chen, “CMOS with active well bias for low-power and RF/analog application,” in Symp. VLSI Technology Dig., pp. 158-159, 2000.
    [61] S. Das, and S. K. Lahiri, “Electrical trimming of ion-beam-sputtered polysilicon resistors by high current pulses,” IEEE Trans. Electron Devices, vol. ED-41, no. 8, pp. 738-744, 1994.
    [62] R. Huang, and C. L. Wey, “Simple low-voltage high-speed high-linearity V-I converter with S/H for analog signal processing applications,” IEEE Trans. Circuits and Systems, vol. 43, no. 1, pp. 52-55, 1996.
    [63] G. Miles, T. Hook, M. Faucher, and K. Morrett, “Resistive extraction of polysilicon linewidth,” IEEE SEMI Advanced Semiconductor Manufacturing Conference, pp. 24-29, 1997.
    [64] R. Brederlow, W. Weber, C. Dahl, D. S. Landsiedel, and R. Thewes, “A physical based model for low frequency noise of poly-silicon resistors,” IEEE IEDM Tech. Dig., pp. 89-92, 1998.
    [65] P. P. Apte, S. Potla, D. A. Prinslow, G. Pollack, D. Scott, and K. Varahramyan, “An integrated approached for accurate simulation and modeling of the silicide-source/drain structure and the silicide-diffusion contact resistance,” IEEE IEDM Tech. Dig., pp. 729-732, 1998.
    [66] R. Thewes, R. Brederlow, C. Dahl, U. Kollmer, C. G. Linnenbank, B. Holzapfl, J. Becker, J. Kissing, S. Kessel, and W. Weber, “Explanation and quantitative model for the matching behavior of poly-silicon resistors,” IEEE IEDM Tech. Dig., pp. 771-774, 1998.
    [67] S. Kumar, and L. Bouknight, “Modeling of polycrystalline silicon thermal coefficient of resistance,” IEEE IRW final report, pp. 150-151, 1999.
    [68] H. Akimori, N. Owada, T. Taneoka, and H. Uda, “Reliability study on polycrystalline silicon thin film resitors used in LSIs under thermal and electrical stress,” IEEE IRPS, pp. 276-280, 1990.
    [69] J. E. Saurez, B. E. Johnson, and B. E. Kareh, “Thermal stability of polysilicon resistors” IEEE Trans. Component, Hybrids, and Manufacturing Technology, vol. 15, No. 3, 1992.
    [70] J. A. Babcock, D. W. Feldbaumer, and V. M. Mercier, “Polysilicon resistor trimming for package integrated circuits,” IEEE IEDM Tech. Dig., pp. 247-250, 1993.
    [71] Y. Taur, S. Wind, Y. J. Mii, Y. Lii, D. Moy, K. A. Jenkins, C. L. Chen, P. J. Coane, D. Klaus, J. Bucchignano, M. Rosenfield, M. G. R. Thomson, and M. Polcari, “High performance 0.1 mm CMOS devices with 1.5 V power supply,” in IEDM Tech. Dig., pp. 127-130, 1993.
    [72] C. Wann, F. Assaderaghi, L. Shi, K. Chan, S. Cohen, H. Hovel, K. Jenkins, Y. Lee, D. Sadana, R. Viswanathan, S. Wind, and Y. Taur, “High-performance 0.07-mm CMOS with 9.5-ps gate delay and 150 GHz fT,” IEEE Electron Device Lett., vol. 18, no. 12, 1997.
    [73] N. Bhat and J. Vasi, “Interface-state generation under radiation and high-field stressing in reoxidized nitrided oxide MOS capacitors,” IEEE Trans. Nuclear Science, vol. 39, no. 6, pp. 2230-2235, 1992.
    [74] J. E. Brighton, D. P. Verret, T. T. Ten Eyck, M. T. Welch, R. E. McMann, M. L. Torreno, A. T. Appel, and M. P. Keleher, “Scaling issues in the evolution of ExCL bipolar technology,” in BCTM Tech. Dig., 1988, pp. 121-124.
    [75] C. Y. Lu, J. J. Sung, R. Liu, N. S. Tsai, R. Sing, S. J. Hillenius, and H. C. Kirsch, “Process limitation and device design tradeoffs of self-aligned TiSi2 junction formation in submicrometer CMOS devices,” IEEE Trans. Electron Devices, vol. 38, no. 2, pp. 246-254, 1991.
    [76] K. Shenai, “ Effect of p-base sheet and contact resistances on static current-voltage characteristics of scaled low-voltage vertical power DMOSFETs,” IEEE Electron Device Lett., vol. 12, no 6 , pp. 207-272, 1991.
    [77] T. J. King and K.C. Saraswat, “Low-temperature (≦550 0C) fabrication of poly-Si thin-film transistors,” IEEE Electron Device Lett., vol. 13, no. 6, pp. 309-311, 1992.
    [78] R. M. Patrikar, R. Lal, and J. Vasi, “Net positive-charge buildup in various MOS insulators due to high-field stressing,” IEEE Electron Device Lett., vol. 14, no. 11, pp. 530-532, 1993.
    [79] M. R. Pinto, E. Sangiorgi, and J. Bude, “ Silicon MOS transconductance scaling into the overshoot regime,” IEEE Electron Device Lett., vol. 14, no. 8, pp. 375-378, 1993.
    [80] T. J. King, J. P. McVittie, K. C. Saraswat, and J. R. Pfiester, “Electrical properties of heavily doped polycrystalline silicon-germanium films,” IEEE Trans. Electron Devices, vol. ED-41, no. 2, pp. 228-232, 1994.
    [81] F. J. De la Hidalga, M. J. Deen, and E. A. Gutierrez, “Theoretical and experimental characterization of self-heating in silicon integrated devices operating at low temperatures,” IEEE Trans. Electron Devices, vol. ED-47, no. 5, pp. 1098-1106, 2000.
    [82] Q.F. Wang, K. Maex, S. Kubicek, R. Jonckheere, B. Kerkwijk, R. Verbeeck, S. Biesemans, and K. De Meyer, “New CoSi2 salicide technology for 0.1mm processes and below,” in Symp. VLSI Technology Dig., 1995, pp. 17-18.
    [83] I. C. Kizilyalli, M. J. Thoma, S. A. Lytle, E. P. Martin, Jr., R. Singh, S. C. Vitkavage, P. F. Bechtold, J. W. Kearney, M. M. Rambaud, M. S. Twiford, W. T. Cochran, L.R. Fenstermaker, R. Freyman, Sun Weishi, and A. Duncan, “ High performance 3.3- and 5-V 0.5mm CMOS technology for ASIC's,” IEEE Trans. Semiconductor Manufacturing, vol. 8, no. 4, pp. 440-448, 1995.
    [84] D. Esseni, L. Selmi, E. Sangiorgi, R. Bez, and B. Ricco, “Temperature dependence of gate and substrate currents in the CHE crossover regime,” IEEE Electron Device Lett., vol. 16, no. 11, pp. 506-508, 1995.
    [85] S. Biesemans, S. Kubicek, and K. De Meyer, “Test structure to investigate the series resistance components of source/drain structure,” IEEE Electron Device Lett., vol. 18, no. 10, pp. 477-479, 1997.
    [86] M. Koh, K. Iwamoto, W. Mizubayashi, H. Murakami, T. Ono, M. Tsuno, T. Mihara, K. Shibahara, S. Yokoyama, S. Miyazaki, M.M. Miura, and M. Hirose, “ Threshold voltage fluctuation induced by direct tunnel leakage current through 1.2-2.8 nm thick gate oxides for scaled MOSFETs,” in IEDM Tech. Dig., 1998, pp. 919-922.
    [87] G. Baccarani and S. Reggiani, “A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects” IEEE Trans. Electron Devices, vol. 46, no. 8, pp. 1656-1666, 1999.
    [88] N. C. C. Lu, L. Gerzberg, C. Y. Lu, and J. D. Meindl, “A new conduction model for polycrystalline silicon films,” IEEE Electron Device Lett., vol. 2, pp. 95-98, 1981.
    [89] W. C. Liu, K. B. Thei, H. M. Chuang, K. W. Lin, C. C. Cheng, Y. S. Ho, C. W. Su, S. C. Wong, C. H. Lin, and C. H. Diaz, “Characterization of polysilicon resistors in Sub-0.25mm CMOS ULSI Applications,” IEEE Electron Device Lett., vol. 22, no. 7, pp. 318-320, 2001.
    [90] S. Nygren, D. T. Amm, D. Levy, J. Torres, G. Goltz, T. D’ouville, and P. Delpech, “ Dual-type CMOS gate electrodes by dopant diffusion from silicide,” 4IEEE Trans. Electron Devices, vol. ED-36, no. 6, pp. 1087-1093, 1989.
    [91] S. M. Sze, Physics of Semiconductor Devices, New York : Wiley, 1983.
    [92] S. Mahapatra,V. Ramgopal Rao, K.N. Manjula Rani, C. D. Parikh, J. Vasi, B. Cheng, and M. Khare, “100 nm Channel Length MNSFET’s using a Jet Vapor Deposited Ultra-thin Silicon Nitride Gate Dielectric,” Symposium on VLSI Technology , pp. 79-80, 1999.
    [93] M. Jurczak, T. Skotnicki, M. Paoli, B. Tormen, J. Martins, J. L. Regolini, D. Dutartre, P. Ribot, D. Lenoble, R. Pantel, S. Monfray, “Silicon-on-Nothing (SON)-an innovative process for advanced CMOS,” IEEE Trans. Electron Devices, vol. 47, no. 11, pp. 2179-2187, 2000.
    [94] M. Togo, S. Kimura, T. Mogami, “Recoiled-oxygen-free processing for 1.5 nm SiON gate-dielectric in sub-100-nm CMOS technology,” IEEE Trans. Electron Devices, vol. 49, no. 7, pp. 1165 -1171, 2002.
    [95] C. L. Chu, K. C. Saraswat, and S. S. Wong, “ Measurement of lateral dopant diffusion in thin film silicide layers,” IEEE Trans. Electron Devices, vol. ED-39, no. 10, pp. 2333-2340, 1992.
    [96] B. Swaminathan, K. C. Saraswat, R. Dutto, and T. Kamins, “Diffusion of arsenic in polycrystalline silicon,” Appl. Phys. Lett., vol. 40, pp. 795, 1982.
    [97] S. Seki, O. Kogure, and B. Tsujiyama, “Effects of crystallization on the trap state densities at grain boundaries in polycrystalline silicon,” IEEE Electron Device Lett., vol. 8, no. 8, pp. 368-370, 1987.
    [98] M. Rodder and S. K. Madan, “Extraction of channel length and junction voltage in n+/n/n+ or n+/p/n+ polysilicon resistor,” IEEE Trans. Electron Devices, vol. ED-39, no. 8, pp. 1968-1970, 1992.
    [99] A. I. Michael, D. Church, C. S. Rhee, J. M. Johnson, J. T. Gasner, W. A. Ligon, P. A. Begley, and G. A. DeJong, “ A fully complementary BiCMOS technology for 10 V mixed-signal circuit application,” IEEE Trans. Electron Devices, vol. 41, no. 7, pp. 1149-1160, 1994.
    [100] S. Das, and S. K. Lahiri, “A large-bias conduction model of polycrystalline silicon film,” IEEE Trans. Electron Devices, vol. 41, no. 4, pp. 524-532, 1994.
    [101] R. Virkus, D. Weiser, K. Green, D. Richardson, and G. Westphal, “Modeling of non-linear polysilicon resistor for analog circuits design,” Proc. IEEE Int. CMTS, vol. 14, Mar., 2001.
    [102] A. Amerasekera, M. C. Chang, J. A. Seitchik, A. Chatterjee, K. Mayaram, and J. H. Chern, “Self-heating effects in basic semiconductor structure,” IEEE Trans. Electron Devices, vol. 40, pp. 1855-1863, Oct., 1993.
    [103] Z. Bendekovic, P. Biljanovic, and D. Grgec, “Polysilicon temperature sensor,” in Proc. VLSI Tech. symp., pp. 362-366, 1998.
    [104] B. Szelag, S. Kubicek, K. De Meyer, and F. Balestra, “Time-dependent degradation law for reliable lifetime prediction in sub-0.25 mm bulk silicon N-MOSFETs,” Electronics Lett., vol. 35, pp. 1385-1386, Aug., 1999.
    [105] E. I. Cole Jr., J. S. Suehle, K. A. Peterson, P. Chaparala, A. N. Campbell, E. S. Snyder, D. G. Pierce, “OBIC analysis of stressed, thermally-isolated polysilicon resistors,” in Proc. Int. Reli. Phys. Symp. (IRPS), pp. 234-243, 1995.
    [106] S. Vaidya, “Electromigration in aluminum/poly-silicon composites,” Appl. Phys. Lett., vol. 39, pp. 900-902, 1981.
    [107] N. C. C. Lu, L. Gerzberg, C. Y. Lu, and J. D. Meindl, “Modeling and optimization of monolithic polycrystalline silicon resistor,” IEEE Trans. Electron Devices, vol. 30, pp. 137-148, 1981.
    [108] M. Peisl, and W. Wieder, “Conductivity in polycrystalline silicon: physics and rigoros numerical treatment,” IEEE Trans. Electron Devices, vol. 30, pp. 1792-1797, 1993.
    [109] T. Manku, J. H. Orchard -Webb, “Reliability problems of polysilicon/Al contacts due to grain-boundary enhanced thermomigration effects,” IEEE Trans. Reliability, vol. 44, pp. 550-555, Apr., 1995.
    [110] M. M. Mandurah, K. C. Sarawat, and C. R. Helms, “Dopant segregation in polycrystalline silicon,” J. Appl. Phys., vol. 51, pp. 5755-5763, Nov., 1980.
    [111] C. Y. Wong, C. R. M. Grovenor, P. E. Batson, D. A. Smith, “Effect of arsenic segregation on the electrical properties of grain boundaries in polycrystalline silicon,” J. Appl. Phys. , vol. 57, pp. 438-442, 1985.

    下載圖示 校內:立即公開
    校外:2003-08-14公開
    QR CODE