簡易檢索 / 詳目顯示

研究生: 呂洸磊
Lu, Kuang-Lei
論文名稱: 潛沒式柔性減能網對於海岸侵淤效應之實驗分析
Experimental study on the effect of shore erosion and deposition by using Submerged Derosion Lattice
指導教授: 楊瑞源
Yang, Ray-Yeng
學位類別: 碩士
Master
系所名稱: 工學院 - 自然災害減災及管理國際碩士學位學程
International Master Program on Natural Hazards Mitigation and Management
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 119
中文關鍵詞: 水工模擬試驗柔性工法系列柔性減能網潛沒式柔性減能網漂沙動床模型
外文關鍵詞: Hydraulic simulation test, Soft coastal protection work, Series Derosion Lattices, Submerged Derosion Lattices, Sedimentation movable-bed model
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了保護海岸避免海岸侵蝕,本研究以柔性保護工法的概念,接續著前人柔性減能網的相關研究。本文主旨為利用模型試驗研究規則波通過各種配置的柔性減能網,模擬在波浪作用下侵蝕型海灘剖面之海岸斷面變遷,及分析波高衰減量及其輸沙運移特性。本試驗於國立成功大學水工試驗所進行,試驗主要在分析各種配置的柔性減能網周圍之漂沙落淤變化。其中波浪條件的改變包括進行不同的週期、波高組合(波浪尖銳度)、水位(相對水深比)等條件,以研析漂沙落淤量及海灘剖面坡度變化之差異。
    根據前人的文獻分析結果,尖銳度增加則整體碎波能量損失增加,對海灘的侵蝕量也增加,而在建立柔性減能網模型後,其侵蝕效果能得到相當大程度的改善,但同時也會造成柔性減能網的堤前掏刷問題。本研究透過資料收集、實驗設計、建立不同試驗模型配置的方式,以系列潛堤的概念設計出潛沒式柔性減能網及系列柔性減能網,綜整分析入射波浪尖銳度、底層泥沙之間的交互作用機制,以瞭解侵蝕海岸可能的輸沙運移的方向與途徑,並有準確的地形測量結果,提供建立最佳化配置的柔性減能網模型的依據。
    最後並由實驗結果得知,與無建置柔性減能網時相比,柔性減能網後囚沙高度差異最大約達到29%,潛沒式柔性減能網後差異最大約達到24%及系列柔性減能網後差異最大約達到25%。而柔性減能網前侵蝕深度差異最大約達到16%,潛沒式柔性減能網前差異最大約達到12%及系列柔性減能網前差異最大約達到13%。而在大部分情況下,柔性減能網在週期較長的情況下之消波效果較差;在初始波高較高的情況下,消波效果也會降低,同時濁度的減少也變得較少。此外,當水深增加時,減能網的消波效果也會變差,並且濁度的降低程度也會減少。綜言之,各種配置的柔性減能網於侵蝕型海灘皆能提供改善及保護效應,且潛沒式柔性減能網及系列柔性減能網皆能減緩柔性減能網堤前掏刷的現象。

    This study, building on earlier Derosion Lattice research, employed a soft protection approach to safeguard coastlines from erosion. Its main objective was to investigate how regular waves interacted with various Derosion Lattice configurations, simulating changes in eroded beach profiles under wave action and analyzing wave height dissipation and sand transport. Experiments were conducted at the Tainan Hydraulics Laboratory, National Cheng Kung University, primarily focusing on sedimentation around Derosion lattice configurations. Wave conditions, including periods, wave height combinations, and water levels, were varied to analyze sediment deposition and beach profile changes.
    According to the results of earlier literature, an increase in wave steepness leads to an increase in the overall energy loss of the breaking wave and even an increase in the amount of erosion on the beach. After modeling the Derosion Lattice, the coastal erosion problem could be considerably improved. At the same time, it also caused a problem of front scouring of the dike in the Derosion Lattice. In this study, the concept of a series of submerged breakwaters was used to design the Submerged Derosion Lattice and the Series Derosion Lattices using data collection, experimental design, and establishment of different experimental model configurations. Through a comprehensive analysis of wave steepness and bottom sediment interaction, this study aimed to clarify the direction and pathway of potential sand transport in coastal erosion scenarios. Combined with correct topography measurements, it provided the basis for modeling the Derosion Lattice in an optimally configured configuration.
    In conclusion, compared to no modeling, the maximum bottom elevation differences after Emerged Derosion Lattice, Submerged Derosion Lattice, and Series Derosion Lattice models are 29%, 24%, and 25% respectively and the amount in front of Emerged Derosion Lattice, Submerged Derosion Lattice, and Series Derosion Lattice models are (-16%), (-12%), and (-13%). The trend across all Derosion Lattice configurations indicates weaker wave height dissipation effectiveness with longer wave periods, decreased effectiveness with higher initial wave heights, and diminishing effectiveness with increased water depth, leading to lower turbidity reduction. various configurations can provide improvement on eroded beaches, and both submerged Derosion Lattice and series Derosion Lattice can mitigate scouring in front of the Derosion Lattice.

    Abstract I 中文摘要 II Acknowledgement III Contents IV List of Table VII List of Figure VIII Chapter 1. Introduction 1  1-1 Research motivation and objective 1  1-2 Literature review 3   1-2-1 Development of coastal protection methods 3   1-2-2 Derosion Lattice 4   1-2-3 Series of submerged breakwaters 6   1-2-4 Submerged Derosion Lattice & Series Derosion Lattices 7   1-2-5 Model law of hydraulic simulation test 9   1-2-6 Eroded coast 15   1-2-7 Wave shoaling 17  1-3 Outline of the study 18 Chapter 2. Experimental Methodology 20  2-1 Experimental equipment 20   2-1-1 Experimental glass water flume 20   2-1-2 Sedimentation movable-bed section 21   2-1-3 Each type of Derosion Lattice models 22   2-1-4 Piston-type wavemaker 25   2-1-5 Capatative wave gages 27   2-1-6 Turbidity meters 28   2-1-7 Ultrasonic distance measurement instrument 30   2-1-8 Carriage system for measurement 31  2-2 Experimental configuration 33   2-2-1 Emerged Derosion Lattice 35   2-2-2 Submerged Derosion Lattice 35   2-2-3 Series Derosion Lattice (one emerged, one submerged) 36  2-3 Experimental test conditions 37  2-4 Experimental processes 41   2-4-1 Particle size analysis 41   2-4-2 Calibration of wave gages and turbidity meters 43   2-4-3 Water flume marking and movable-bed section laying 48   2-4-4 Installation of the Derosion Lattice model and water filling 48   2-4-5 Executing the model experiment and recording each data 49 Chapter 3. Results and Discussion of Wave Dissipation and Turbidity 52  3-1 Wave height dissipation analysis 52  3-2 Turbidity analysis of sedimentation 70 Chapter 4. Results and Discussion of Bottom Profile 84  4-1 Confirmation of wave conditions 84  4-2 Erosion with each type of Derosion Lattice models 84 Chapter 5. Conclusion and Suggestion 97  5-1 Conclusion 97  5-2 Suggestion 99   5-2-1 Experimental method improvement 99   5-2-2 Future research directions 99 References 101

    1. ASTM. Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. (2018).
    2. ASTM. Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. (2018).
    3. Almeida, L. D. An Artificial Reef for Wave Energy Harnessing and Shore Protection - A New Concept towards Multipurpose Sustainable Solutions. Renewable Energy 114(2017)817-829, (2017).
    4. Berkhoff, J.C.W., "Computation of Combined Refraction-Diffraction," Proceedings of the 13th International Conference on Coastal Engineering, ASCE, Vancouver, Vol. 1, pp. 705-720, (1972).
    5. Calabrese, M., Vicinanza, D., & Buccino, M. 2D Wave Setup behind Submerged Breakwaters. Ocean Engineering, 35, 1015–1028. (2008).
    6. Davies, A. G., and Heathershaw, A.D., Surface wave propagation over sinusoidally varying topography. Fluid Mechanics, 144:419-443, (1984).
    7. Davies, A.G., Guazzelli, E. and Belzons, M. "The Propagation over Sinusoidally Varying Topography," Physical Fluids, Vol. 144, A1 (8), pp. 1331-1340, (1989).
    8. Goda, Y. Irregular wave deformation in the surf zone. Coastal Engineering in Japan, 18(1), 13-26, (1975).
    9. Goda, Y. and Suzuki, and Suzuki, Y., Estimation of Incident and Reflection Waves in Random Wave Experiments. Proceedings of the 15th International Conference on Coastal Engineering, ASCE, Hawaii,628-650, (1976).
    10. Hong, T. H., Lin, G. Y., Peng, T. H., & Jan, C. D. Flexible retaining structure for evaluation of debris-flow hazards mitigation. In Proceedings of The 12th conference on current research in geotechnical engineering in Taiwan, Chi-Tou Taiwan (in Chinese), (2007).
    11. Jan, C. D., Peng, T. H., Huang, S. J., & Hsu, H. C. (2015). An experimental field study using a flexible high-strengh net breakwater for shore protection. Journal of Marine Science and Technology, 23(1), 14. (2015).
    12. Kajima, R., Shimizu, T., Maruyama, K., & Saito, S. Experiments on beach profile change with a large wave flume. In Coastal Engineering 1982 (pp. 1385-1404) (1982).
    13. Kirby, J. T., A general wave equation for wave over rippled beds. Fluid Mechanics, 162:171-186, (1986).
    14. Kirby, J.T., and Anton, J.P., Bragg reflection of waves by artificial bars. Proc. of the 22nd International Conference on Coastal Engineering, ASCE, 757-768, (1990).
    15. Komar, P. D. The 1997-98 El Niño and erosion on the Oregon coast. Shore & Beach, 66(3), 33-41. (1998).
    16. Lee, jyun-you. Experimental Study on the Shore Erosion and Deposition Evolution by Using Derosion Lattice. National Cheng Kung University International Master Program on Natural Hazards Mitigation and Management Master Thesis, (2022)
    17. Lee, E. Harris. Artificial Reefs for Ecosystem Restoration and Coastal Erosion Protection with Aquaculture and Recreational Amenities. (2006).
    18. Li, Y., You, Z., Ma, Y., & Ren, B. Quantitative Assessment of the Shoreline Protection Performance of Geotextile Sandbags at an In-Situ Coastal Experimental Station. Geotextiles and Geomembranes. (2023).
    19. Mei, C.C., "Resonance Reflection of Surface Waves by a Periodic Sandbars," Journal of Fluid Mechanics, Vol. 152, pp. 315-335, (1985).
    20. Mei, C.C., Hara, T. and Naciri, M., "Note on Bragg Scattering of Water Waves by Parallel Bars on the Seabed," Journal of Fluid Mechanics, Vol. 186, pp. 147-162, (1988).
    21. Miles, J.W., "Oblique Surface-Wave Diffraction by a Cylindrical Obstacle," Dynamics of Amospheres and Oceans, Vol. 6, pp. 121-133, (1981).
    22. O 'Hare, T.J. and Davies, A.G., "A Comparison of Two Models for Surface-Wave Propagation over Rapidly Topography," Applied Ocean Research, Vol. 15, pp. 1-11, (1993).
    23. Sato, S., Ijima, T., & Tanaka, N. A study of critical depth and mode of sand movement using radioactive glass sand. Coastal Engineering Proceedings, (8), 18-18, (1962).
    24. Silvester, R. and Hsu, J. R. C., Costal Stabilization: Innovative Concepts, Prentice Hall, New Jersey, (1993).
    25. Sunamura, T., & Horikawa, K. Two dimensional beach transformation due to waves. In Coastal Engineering 1974 (pp. 920-938), (1975).
    26. Sunamura, T. Quantitative predictions of beach-face slopes. Geological Society of America Bulletin, 95(2), 242-245. (1984).
    27. Thongsri, jatuporn, Tangsopa, W., Kaewbumrung, M., Phanak, M., & Busayaporn, W. Derosion Lattice Performance and Optimization in Solving an End Effect Assessed by CFD: A Case Study in Thailand’s Beach. Water. https:// doi.org/10.3390/w14091358. (2022).
    28. T. schoonees, A. gijón mancheño, B. scheres, T. j. bouma, R. silva, T. schlurmann, & H. schüttrumpf. Hard Structures for Coastal Protection, Towards Greener Designs. (2019).
    29. U.S. Army Corps of Engineers, Shore Protection Manual, Dept. of the Army, Waterways Experiment Station, Corps of Engineers, Coastal Engineering Research Center, Vicksburg, Miss. (1984).
    30. U.S. Army Corps of Engineers, Review of Debris Production and Level-of-Protection Deer Creek Debris Basin, (2004).
    31. Wang, S.K., Hsu, T.W., Weng, W.K. and Ou, S.H., "A Three-Point Method for Estimating Wave Reflection of Obliquely Incident Waves over a Sloping Bottom," Coastal Engineering, Vol. 55, pp. 125-138, (2008).
    32. Yang, R. Y., Wu, Y. C., Hwung, H. H., Liou, J. Y., & Shugan, I. V. Current countermeasure of beach erosion control and its application in Taiwan. Ocean & coastal management, 53(9), 552-561, (2010).
    33. Yoshida, J., Udo, K., Takeda, Y., and Mano, A., “Potential impact of climate change at five Japanese beaches,” Journal of Coastal Re-search. Vol. 65, pp. 2185-2190, (2013).
    34. Zhao, Fenfang, Yang, M., Tang, Y., & Xu, S. Numerical Simulation of Offshore Wind Power Pile Foundation Scour with Different Arrangements of Artificial Reefs. Marine Science. (2023).
    35. Zhang, K., Douglas, B.C., and Leatherman, S. P., “Global warming and coastal erosion,” Climatic Change, Vol. 64, No. 1-2, pp. 41-58, (2004).
    36. 林銘崇,蕭松山,「海岸保護近自然生態工法」,大紀元時報,(2009)。
    37. 交通部運輸研究所,「生態型海岸保護工法研究(1/4)」,(2006)。
    38. 李俊佑,柔性減能網對於海岸侵淤變化之實驗研究。國立成功大學自然災害減災及管理國際碩士學位學程碩士論文,(2022)。
    39. 李裕群,系列潛堤應用於海岸防護之可行性分析。國立成功大學水利及海洋工程學系碩士論文,(2009)。
    40. 李怡婷,以海岸水動力及海岸漂沙劃設海岸緩衝區。國立成功大學海洋科技與事務研究所博士論文,(2011)。
    41. 經濟部水利署,「海灘侵蝕防治新科技研發(4/4)」,成功大學水工試驗所,(2004)。
    42. 經濟部水利署,「近海水文觀測技術提昇與資料分析研究(1/2)」,(2006)。
    43. 經濟部水利署,「近海水文觀測技術提昇與資料分析研究(2/2)」,(2007)。
    44. 經濟部水利署,「現有禦潮(海堤)設施」,(2008)。
    45. 蔡立宏,系列潛堤應用於海岸保護之研究 (1/4) (Vol. 1009500749)。中華民國政府出版品,(2006)。
    46. 蔡立宏,系列潛堤應用於海岸保護之研究 (2/4) (Vol. 1009600779)。中華民國政府出版品,(2007)。
    47. 蔡立宏,系列潛堤應用於海岸保護之研究 (4/4) (Vol. 1009801342)。中華民國政府出版品,(2009)。
    48. 徐如娟,系列潛堤應用於海岸保護之研究 (3/4) (Vol. 1009700839)。中華民國政府出版品,(2008)。
    49. 彭大雄&詹錢登。柔性葉片環圈堆對橋墩抗沖刷效果之實驗研究,(2007)。
    50. 彭大雄,使用柔性網狀防波堤保護海岸之現地實驗研究,國立成功大學水利暨海洋工程系所博士論文,(2014)。
    51. 詹錢登,彭大雄,王志賢,徐郁超,黃文舜,莊瑞安。防止海岸侵蝕柔性保護工法現地實驗研究(1/3)。行政院國家科學委員會補助產學合作研究計畫成果精簡報告,(2009)。
    52. 詹錢登,防止海岸侵蝕柔性保護工法現地實驗研究(1/3),國科會研究計畫成果精簡報告,(2009)。
    53. 詹錢登,「防止海岸侵蝕柔性保護工法現地實驗研究(2/3)」,國科會研究計畫成果精簡報告,(2010)。
    54. 莊瑞安,「鋼索攔截網防止海岸沖蝕成效之現地觀測研究-以台南雙春海岸為例」。國立成功大學水利及海洋工程學系碩士論文,(2010)。
    55. 歐善惠 & 許泰文,傾斜海灘上之海岸動床模型相似律。港灣技術,1,33-50,(1985)。
    56. 歐善惠,王順寬,許泰文,廖學瑞,二維海灘地形變化分析與預測,(1985)。
    57. 劉儀邦,波浪通過系列潛堤之布拉格反射研究。國立中興大學土木工程學系碩士論文,(2015)。
    58. 邱鈺宸,應用聲學及光學儀器在均勻及現場懸浮質濃度之量測率定及比較。國立中央大學水文與海洋科學研究所碩士論文,(2015)。
    59. 何明峰,成功筐網應用在海岸保護-以雙春海岸為例。國立成功大學水利及海洋工程研究所碩士論文,(2012)。
    60. 葉旭璽,連續彈性透水潛堤與波浪之互制分析。國立成功大學水利及海洋工程研究所碩士論文,(2008)。
    61. 黃清和,蔡立宏,溫志中,高雄赤崁海岸以系列潛堤防禦颱風波浪之研究。建國科大學報:工程類,(2005)。
    62. 吳俊德,「筐網應用海岸保全之研究」,國立成功大學水利及海洋工程碩士論文,(2008)。
    63. 郭一羽,「海岸工程學」,文山書局,(2003)。
    64. 郭金棟,「海岸保護」,科技圖書股份有限公司,(2004)。
    65. 陳陽益,湯麟武,「波床底床上規則前進重力波之解析」第十二屆海洋工程研討會論文集,台灣台北,第270-305頁,(1990)。
    66. 陳陽益,「規則前進重力波傳遞於波形底床上」港灣技術第七期,第17-47頁,(1992)。
    67. 張憲國,許泰文,李逸信,「波浪通過人工沙洲之試驗研究」,第十九屆海洋工程研討會論文集,台灣台中,第242-249頁,(1997)。
    68. 侯丞謙,濁水溪出海口及鄰近區域的泥沙輸送研究。國立成功大學水利及海洋工程研究所碩士論文,(2023)。

    無法下載圖示 校內:2026-07-31公開
    校外:2026-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE