研究生: |
張哲嘉 Chang, Che-Chia |
---|---|
論文名稱: |
適用於IEEE 802.11n標準下低密度同位元檢查碼分層架構解碼器之全模式位移電路設計 A Novel Full-Mode Shift Network Design in Layered LDPC Decoder for IEEE 802.11n Applications |
指導教授: |
謝明得
Shieh, Ming-Der |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 48 |
中文關鍵詞: | 錯誤更正碼 、低密度同位元檢查碼 、解碼器 、分層式解碼 、位移電路 |
外文關鍵詞: | Error Control Coding, Low-density Parity-check (LDPC) Code, Decoder, Layered Decoding, Shift Network |
相關次數: | 點閱:130 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前IEEE 802.11n被許多無線通訊應用廣泛的採用,而為了達到更高的資料處理速度,IEEE 802.11ac目標是能夠達到1Gbps的處理速度。雖然有很多文獻在探討如何設計一個類循環低密度同位元碼(Quasi-cyclic low-density parity-check code)解碼器,但卻很少可以在不同的資料處理速度下,提供一個有效率且彈性的硬體設計方法。
本篇論文中,我們提出了一個安排記憶體配置的方法,有效解決,假如使用單位矩陣區塊設計的解碼器同時處理多個單位矩陣區塊,記憶體會遇到的資料讀取衝突的問題。另一方面,我們實現了適用於IEEE 802.11n標準全模式解碼器之位移電路。所提出之位移電路只需要一個簡單的桶形移位器(Barrel shifter)與低複雜的判斷單元,即可完成適合IEEE 802.11n中所定義的三個不同大小的展開矩陣。此外,此設計亦可在無資料擁擠的前提下,平行處理多筆資訊的位移。其中,利用循環字首(Cyclic prefix)的概念以及三種展開矩陣的倍數關係,在位移資料時,我們發現在多餘的輸入埠複製有用的資訊與額外的位移量,可以大幅地降低原本所需的判斷單元複雜度。上述提出的兩個方法可以幫助我們有效率的設計一個多模式的類循環低密度同位元檢查碼解碼器。
Currently, IEEE 802.11ac, which is developed from IEEE 802.11n, is aimed to achieve the higher throughput rate, at least 1 Gbps. Although there are lots of approaches to design quasi-cyclic low-complexity parity-check (QC-LDPC) decoders, few efficient methods have not been found to construct QC-LDPC decoders with the flexibility of the throughput rate.
In this thesis, a method for memory arrangement is proposed to solve the memory access conflict from multiple blocks processed concurrently in the block-parallel decoder. Furthermore, a modified shift network for the full-mode LDPC decoder is proposed for IEEE 802.11n applications. To significantly reduce complexity of shift network architecture, the concept of cyclic prefix and the relationship among three expansion factors of parity check matrices are adopted when no data congestion occurs in parallel decoding messages routing. Additionally, additional circular shift and appropriate duplication in redundant input ports of the barrel shifter help us to reduce the complexity of decision units. Therefore, the proposed shift network architecture is only composed of a simple barrel shifter and a low-complexity block selector. In conclusion, a full-mode QC-LDPC decoder can be efficiently designed using the above two approaches.
[1] IEEE 802.11 Wireless LANs WWiSE Proposed: High Throughput Extension to the 802.11 Standard, IEEE 11-04-0886-00-000n, 2004.
[2] Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium, IEEE P802.16e-2005, Oct. 2005.
[3] M. P. C. Fossorier, “Quasicyclic low-density parity-check codes from circulant permutation matrices,” IEEE Trans. Inform. Theory, vol. 50, no. 8, pp. 1788-1793, Aug. 2004.
[4] L. Yang, H. Liu, and C. J. R. Shi, “Code construction and FPGA implementation of a low-error-floor multi-rate low-density parity-check code decoder,” IEEE Trans. Circuits Syst. I, Regular. Papers, vol. 53, no. 4, pp. 892-904, Apr. 2006.
[5] C. P. Fewer, M. F. Flanagan, and A. D. Fagan, “A versatile variable rate LDPC codec architecture,” IEEE Trans. Circuits Syst. I, Regular Papers, vol. 54, no. 10, pp. 2240-2251, Oct. 2007.
[6] J. Jin and C.Y. Tsui, “An energy efficient layered decoding architecture for LDPC decoder,” IEEE Trans. VLSI Syst., vol. 18, no. 8, pp. 1185-1195, Aug. 2010.
[7] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform. Theory, vol. IT-8, pp. 21-28, Jan. 1962.
[8] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform. Theory, vol. 27, no. 5, pp. 533-547, Sep. 1981.
[9] L. Chen, J. Xu, I. Djurdjevic, and S. Lin, “Near-Shannon-limit quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun., vol. 52, no. 7, pp. 1038-1042, July 2004.
[10] T. Brack, M. Alles, T. Lehnigk-Emden, F. Kienle, N. When, N. E. L’Insalaata, F. Rossi, M. Rovini, and L. Fanucci, “Low-complexity LDPC code decoders for next generation standards,” in Proc. Design Automation and Test in Europe, Apr. 2007, pp. 1-6.
[11] C. H. Liu, S. W. Yen, C. L. Chen, H. C. Chang, C. Y. Lee, Y. S. Hsu, and S. J. Jou, “An LDPC decoder chip based on self-routing network for IEEE 802.16e applications,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 684-694, Mar. 2008.
[12] J. Tang, T. Bhatt, V. Sundaramurthy, and K. K. Parhi, “Reconfigurable shuffle network design in LDPC decoders,” in Proc. Application-Specific Syst., Architecture and Processors, 2006, Steamboat Spring, CO, Sep. 2006, pp. 81-86.
[13] F. Quaglio, F. Vacca, C. Castellano, A. Tarable, and G. Masera, “Interconnection framework for high-throughput, flexible LDPC decoders,” in Proc. Design Automation and Test in Europe, Mar. 2006, vol. 2, pp. 6-10.
[14] M. Rovini, F. Rossi, P. Ciao, N. L’Insalata, and L. Fanucci, “Layered decoding of non-layered LDPC codes,” in Proc. Euromicro Conf. Digital Syst. Design, Aug.-Sep. 2006, pp. 537-544.
[15] M. Mansour and N. R. Shanbhag, “A 640-Mb/s 2048-bit programmable LDPC decoder chip,” IEEE J. Solid-State Circuits, vol. 41, pp. 684-698 Mar. 2006.
[16] G. Gentile, M. Rovini, and L. Fanucci, “Low-complexity architectures of a decoder for IEEE 802.16e LDPC codes,” in Proc. Euromicro Conf. Difital Syst. Design Architectures, Methods Tools, Aug. 2007, pp. 369-375.
[17] Y. Sun, M. Markooti, and J. R. Cavallaro, “VLSI decoder architectures for high throughput, variable block-size and multi-rate LDPC codes,” in Proc. IEEE Int. Symp. Circuits and Syst., May 2007, pp. 2104-2107.
[18] K. K. Gunnam, G. Choi, W. Wang, and M. B. Yeary “Multi-rate layered decoder architecture for block LDPC codes of IEEE 802.11n wireless standard,” in Proc. IEEE Int. Symp. Circuits and Syst., May 2007, pp. 1645-1648.
[19] M. Rovini, G. Gentile, F. Rossi, and L. Fanucci, “A scalable decoder architecture for IEEE 802.11n LDPC codes,” in Proc. Global Telecommun. Conf., Nov. 2007, pp. 3270-3274.
[20] X. Y. Shih, C. Z. Zhan, C. H. Liu, and A. Y. Wu, “An 8.29mm2 52mW multi-mode LDPC decoder design for mobile WiMax system in 0.13 um CMOS process,” IEEE J Solid-State Circuits, vol. 43, no. 3, pp. 672-683, Mar. 2008.
[21] Z. Wang and Z. Cui, “A memory efficient partially parallel decoder architecture for QC-LDPC codes,” in Proc. 39th Asilomar Conf. Signals, Syst., Comput., Oct. 2005, pp. 729-733.
[22] C. H. Liu, C. C. Lin, S. W. Yen, C. L. Chen, H. C. Chang, C. Y. Lee, Y. S. Hsu, and S. J. Jou, “Design of a multimode QC-LDPC Decoder Based on shift-routing network,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 9, pp. 734-738, Sep. 2009.
[23] J. Lin, Z. Wang, L. Li, J. Sha, and M. Gao, “Efficient Shuffle network architecture and application for WiMax LDPC decoders,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 3, pp. 215-219, Mar. 2009.
[24] M. Rovini, G. Gentile, and L. Fanucci, “Multi-size circular shifting network for decoders of structured LDPC codes,” Electron. Lett., vol. 17, pp. 938-940, Aug. 2007.
[25] Y. L. Wang, Y. L. Ueng, C. L. Peng, and C. J. Yang, “Processing-task arrangement for a low-complexity full-mode WiMax LDPC codec,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 2, pp. 415-428, Feb. 2011.
[26] Y. L. Ueng, Y. L. Wang, C. Y. Lin, J. Y. Hsu, and P. Ting, “Modified layered message passing decoding with dynamic scheduling and early termination for QC-LDPC codes,” in Proc. IEEE Int. Symp. Circuits and Syst., pp. 121-124, May 2009.
[27] K. Zhang, X. Huang, and Z. Wang, “High-throughput layered decoder implementation for quasi-cyclic LDPC codes,” IEEE J. Sel. Areas Commun., vol. 27, no. 6, pp. 985-994, Aug. 2009.
[28] J. Li, G. He, H. Hou, Z. Zhang, and J. Ma, “Memory efficient layered decoder design with early termination for LDPC codes,” in Proc. IEEE Int. Symp. Circuits and Syst., pp. 2697-2700, May 2011.
[29] M. Markooti, P. Radosavljevic, and J. R. Cavallaro, “Configurable, high throughput, irregular LDPC decoder architecture: Tradeoff analysis and implementation.” In Proc. 17th Int. Conf. Appl.-Specific Syst. Process., 2006, pp. 360-367.