簡易檢索 / 詳目顯示

研究生: 游博盛
You, Bo-Shing
論文名稱: 電沉積CdS/TiO2光陽極以應用於 光電化學產氫之研究
A Study on Electrodeposition of CdS/TiO2 Photoanode Applied in Photoelectrochemical Hydrogen Generation
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 135
中文關鍵詞: 硫化鎘二氧化鈦電沉積光電化學產氫
外文關鍵詞: cadmium sulfide, titanium dioxide, electrodeposition, photoelectrochemical, hydrogen generation
相關次數: 點閱:101下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以氯化鎘及硫代硫酸鈉為前驅物採用脈衝電沉積方式來製備CdS/TiO2光陽極,旨在探討電沉積條件及TiO2模板對所得光陽極組成及微結構之影響,並進一步探討其對光電化學活性及產氫速率之影響。
    在電沉積CdS實驗中,在TiO2模板之影響中,吾人針對陽極氧化之電壓及時間來加以探討;吾人改變施加電壓、電解液組成、沉積電量、浸泡時間、溫度、以及煅燒溫度來探討,並利用XRD、SEM、TEM、XPS、及UV等儀器來進行特性分析。進行光陽極之活性分析時,係利用Xe燈源(100 mW/cm2)照射光陽極,以含有0.25 M Na2S及0.35 M Na2SO3之水溶液作為電解液,進行光電化學反應,以評估各光陽極之光活性。最後並利用離子交換膜串連雙槽PEC反應器,測量各光陽極之產氫速率。
    由TiO2模板之探討結果顯示,奈米管管徑、壁厚及管長受陽極氧化電壓影響甚鉅,但改變時間僅影響管長。而電沉積變因對CdS之析出量、粒徑大小、表面缺陷(或電荷數)影響甚鉅,進而影響光陽極之光活性。最適之還原電壓為-0.7V(vs AgCl/Ag),而鎘離子與硫代硫酸根之最適濃度分別為0.02、0.2M。因電沉積速率極快,每回通入0.2庫倫電量僅約3分鐘即完成,為避免因擴散不及造成極化現象,在通電間隙靜置浸泡之。實驗結果發現,最適之浸泡時間為10分鐘。當增加沉積電量時,所得CdS量隨之增加,但以通入1.0庫倫電量所得CdS/TiO2光陽極具有最佳之光活性;雖然CdS沉積量增加可產生較多之電子電洞對,但當CdS量過多時,再結合機率大幅增加,光活性反而下降。至於煅燒溫度則以300OC為最適條件,所得光陽極之光學活性及耐光腐蝕最佳。
    在本實驗中以40 V、6 hr 陽極氧化之TiO2奈米管作模板(3.0μm)時,所得CdS/TiO2光陽極之光活性最大,其光電流為7.61 mA/cm2、光轉換效率為5.51%,產氫速率為1.88 ml/cm2-h。
    綜上所述,本研究所得CdS/TiO2光陽極之光電流及光轉換效率均較化學浴沉積法大,且製程簡單、省時,具有未來開發潛力。

    In this work, CdS/TiO2 photoanodes were prepared starting from cadmium chloride and sodium thiosulfate by pulse electrodeposition. The influences of preparation conditions and TiO2 template on the composition and microstructure of resulting photoanodes were investigated. Furthermore, the photoactivity of photoanode and the hydrogen generation rate were studied as well.
    From the study of TiO2 template effect, it revealed that the diameter, wall thickness, and length of nanotubes were strongly governed by anodizing voltage, whereas the anodizing time could only manipulate the final tube length. For the study of CdS electrodeposition, preparation conditions including applied voltage, electrolyte composition, input electricity, soaking time, deposition temperature, and calcination temperature were investigated. For the study of TiO2 template effect, both of anodizing voltage and time were investigated by means of XRD, SEM, TEM, XPS, and UV techniques. The activity measurements were carried out in a photoelectrochemical (PEC) cell with an electrolyte of 0.25 M Na2S and 0.35 M Na2SO3 under illumination by Xe lamp (100 mW/cm2). Furthermore, the hydrogen generation rate was measured in a PEC reactor comprised of two compartments separated by an ion exchange membrane.
    The experimental results showed that deposition amount, particle size, defect, and surface state of CdS and the corresponding photo-activities can be correlated with deposition conditions. An optimal applied voltage was -0.7 V (vs. Ag/AgCl), and the cadmium and thiosulfate concentrations were 0.02 and 0.2 M, respectively. The rate of electrodeposition was so fast that merely 3 minutes were required for accomplishing each run of input electricity of 0.2 C. For avoiding the polarization due to diffusion limitation, the pulse deposition with proper soaking was adopted in this work. The result also showed that the optimal soaking time was 10 minutes. As increasing the input electricity, the deposited amount of CdS increased and therefore the photoactivity was consistently increased attributing from the generation of more hole-electron pairs. However, the maximum photoactivity of CdS/TiO2 photoanode was obtained at a total input electricity of 1 C. In fact, overloading CdS would contrarily lead to reducing the photoactivity due to considerable increases of hole-electron recombination. Eventually, the optimal calcination temperature was found to be 300 oC.
    In this study, with the TiO2 template anodized at 40 V for 6 hr(3.0μm), the resulting CdS/TiO2 photoanode exhibited the maximum photoactivity, e.g., a photocurrent of 7.61 mA/cm2, a photoconversion efficiency of 5.51%, and a hydrogen generation rate of 1.88 ml/cm2-h.
    In conclusion, the CdS/TiO2 photoanodes prepared in this work demonstrated larger photocurrent and photoconversion efficiency than those prepared by the sequence-chemical bath deposition (s-CBD), which showed a promising potential of future development.

    總目錄 中文摘要......................................I 英文摘要............................................III 誌謝....................................................V 總目錄................................................VI 表目錄...............................................IX 圖目錄..............................................X 符號表..........................................XVII 第一章 緒論 1.1 氫能之介紹..............................1 1.2 氫氣之製備方法........................1 1.3 CdS/TiO2光陽極結構及性質........................3 1.3.1 二氧化鈦..........................4 1.3.2 硫化鎘............................5 1.4 研究目的及概要........................5 第二章 理論 2.1 製備二氧化鈦薄膜方法.....................19 二氧化鈦奈米管陣列之生成...........................19 2.2 電沉積.........................................21 2.2.1 脈衝電鍍.....................22 2.2.2 線性掃描伏安法..........................22 2.3 光電化學法原理..........................22 2.3.1 太陽光譜及AM1.5G...............22 2.3.2 PEC產氫原理................23 2.3.3 PEC之能帶模型.................24 2.3.4 光轉換效率...................24 2.3.5 電子電洞再結合...............26 第三章 實驗部分 3.1 藥品及材料..............................33 3.2 儀器及分析設備.......................34 3.2.1 設備及裝置.......................34 3.2.2 分析儀器........................34 3.3 實驗方法與步驟......................35 3.3.1 奈米管之製備..................35 3.3.2 電沉積製備CdS/TiO2光陽極............................36 3.3.3 光陽極之活性測試............................37 3.3.4 光陽極之特性分析...........................37 3.3.5 產氫實驗.......................39 第四章 光陽極之特性分析與活性探討 4.1 光陽極之特性分析...........................43 4.1.1 陽極氧化條件對奈米結構之影響..................43 4.1.1.1 陽極氧化時間之影響.............43 4.1.1.2 陽極氧化電壓之影響...............44 4.1.2 電沉積條件對奈米結構及組成之影響...............44 4.1.2.1 電位之影響..................44 4.1.2.2 電解液濃度之影響................46 4.1.2.3 浸泡時間之影響...............46 4.1.2.4 沉積溫度之影響..............47 4.1.2.5 沉積時間之影響................48 4.1.2.6 煅燒溫度之影響................48 4.1.3 陽極氧化條件沉積CdS對奈米結構之影響...........49 4.1.3.1 陽極氧化時間之影響..............49 4.1.3.2 陽極氧化電壓之影響...............49 4.2 光陽極之活性探討...........................50 4.2.1 陽極氧化條件對光活性之影響.................50 4.2.1.1 陽極氧化時間之影響................50 4.2.1.2 陽極氧化電壓之影響.................50 4.2.2 電沉積條件對光活性之影響..................51 4.2.2.1 電位之影響................51 4.2.2.2 電解液濃度之影響................51 4.2.2.3 浸泡時間之影響.................52 4.2.2.4 沉積溫度之影響..................52 4.2.2.5 沉積時間之影響..................53 4.2.2.6 煅燒溫度之影響....................54 4.2.3 陽極氧化條件沉積CdS對光活性之影響.........55 4.2.3.1 陽極氧化時間之影響................55 4.2.3.2 陽極氧化電壓之影響............56 4.3 產氫實驗與綜合比較...........................56 第五章 結論與建議 5.1 結論.....................................120 5.2 建議..................................122 參考文獻......................................124

    參考文獻

    1. Turner, JA “A realizable renewable energy future” Science 285 687-689 1999
    2. Nowotny, J; Sorrell, CC; Sheppard, LR “Solar-hydrogen: Environmentally safe fuel for the future” International Journal of hydrogen energy 30 521-544 2005
    3. Kamat, PV “Meeting the clean energy demand: Nanostructure architectures for solar energy conversion” Journal of physical chemistry C 111 2834-2860 2007
    4. Blanchette, S “A hydrogen economy and its impact on the world as we know it” Energy policy 36 522-530 2008
    5. Sorensen, B “Hydrogen and Fuel Cell” Elsevier academic press, burlington
    6. Trieb, F Concentrating solar power for the Mediterranean Region, in final report, German Aerospace Center (DLR) 2005
    7. 曲新生, 陳發林, 呂錫民 “產氫與儲氫技術” 五南圖書 初版 2007
    8. 施翠盈, “本土性梭菌屬產氫菌株之分離與生理特性研究” 國立成功大學生 物學研究所碩士論文2002
    9. 魚崎浩平, 喜多英明, 黃忠良譯 ”基本電化學” 復漢出版社 1983
    10. P. Ridge “Hydrogen manufacture by electrolysis, thermal decomposition and unusual techniques” Noyes Data corporation, New Jersey, M. S. Casper 1978
    11. Fujishma, A; Honda, K “Electrochemical photochemical photolysis of water at a semiconductor electrode” Nature 238 37-38 1972
    12. Xu, Y; Schoonen, MAA “The absolute energy positions of conduction and valence bands of selected semiconducting minerals” American mineralogist 85 543-556 2000
    13. Bograrello, E; Kiwi, J, Gratzel, M “Visible-light induced water cleavage in colloidal solutions of chromiun-doped titanium-dioxide particles” Journal of the American chemical society 104 2996-3002 1982
    14. Khan, MA; Woo, SI, Yang, OB “Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction” International Journal of hydrogen Energy 33 5345-5351 2008
    15. Kato, H; Kudo, A “Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium” Journal of physical chemistry B 106 5029-5034 2002
    16. Niishiro, R; Konta, R; Kato, H “Photocatalytic O2 evolution of rhodium and antimony-codoped rutile-type TiO2 under visible light irradiation” Journal of physical chemistry C 111 17420–17426 2007
    17. Ohno, T; Tanigawa, F; Fujihara, K “Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder” Journal of photochemistry and photobiology A-chemistry 127 107-110 1999
    18. Asahi, R; Morikawa, T; Ohwaki, T “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides” Science 293 269-271 2001
    19. Sakthivel, S; Janczarek, M; Kisch, H “Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO2" Journal of physical chemistry B 108 19384–19387 2004
    20. Shaban, Y; Khan, S "Visible light active carbon modified n-TiO2 for efficient hydrogen production by photoelectrochemical splitting of water." International Journal of hydrogen Energy 33 1118-1126 2008
    21. Shaban, Y; Khan, S "Carbon modified (CM)-n-TiO2 thin films for efficient water splitting to H2 and O2 under xenon lamp light and natural sunlight illuminations." Journal of solid state chemistry 13 1025-1036 2009
    22. Ho, W; Yu, JC; Lee, S “Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity” Journal of solid state chemistry 179 1171-1176 2006
    23. Bidaye, PP; Khushalani, D; Fernandes, JB ” A simple method for synthesis of S-doped TiO2 of high photocatalytic activity” Catalysis letters 134 169-174 2010
    24. Wang, H; Bai, YS; Zhang, H “CdS Quantum dots-sensitized TiO2 nanorod array on transparent conductive glass photoelectrodes” Journal of physical chemistry C 114 16451–16455 2010
    25. Chen, C; Xie, Y; Ali, G “Improved conversion efficiency of CdS quantum dots-sensitized TiO2 nanotube array using ZnO energy barrier layer” Nanotechnology 22 015202 2011
    26. Song, XM; Wu, JM; Yan, M “Distinct visible-light response of composite films with CdS electrodeposited on TiO2 nanorod and nanotube arrays” Electrochemistry communications 11 2203-2206 2009
    27. Banerjee, S; Mohapatra, SK; Das, PP “Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS” Chemistry of materials 20 6784–6791 2008
    28. Wang, CL; Sun, L; Yun, H “Sonoelectrochemical synthesis of highly photoelectrochemically active TiO2 nanotubes by incorporating CdS nanoparticles” Nanotechnology 20 6784-6791 2009
    29. Gao, XF; Sun, WT; Hu, ZD “An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films” Journal of physical chemistry C 113 20481–20485 2009
    30. Fan, SQ; Kim, D; Kim, JJ “Highly efficient CdSe quantum-dot-sensitized TiO2 photoelectrodes for solar cell applications” Electrochemistry communications 11 1337-1339 2009
    31. Bang, JH; Kamat, PV “Solar cells by design: photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe” Advance functional materials 20 1970-1976 2010
    32. Yang, LX; Luo, SL; Liu, RH “ Fabrication of CdSe nanoparticles sensitized long TiO2 nanotube arrays for photocatalytic degradation of anthracene-9-carbonxylic acid under green monochromatic Light” Journal of solid state chemistry C 114 4783–4789 2010
    33. Toyoda, T; Uehata, T; Suganuma, R “Crystal growth. of CdSe quantum dots adsorbed on nanoparticle, inverse opal, and nanotube TiO2 photoelectrodes characterized by photoacoustic spectroscopy” Japanese journal of applied physics part 1-regular papers brief communications & review papers 46 4616-4621 2007
    34. Huang, L; Zhang; S, Peng; F “Electrodeposition preparation of octahedral-Cu2O-loaded TiO2 nanotube arrays for visible light-driven photocatalysis” Scripta materialla 63 159-161 2010
    35. Hou, Y; Li, XY; Zhao, QD “Fabrication of Cu2O/TiO2 nanotube heterojunction arrays and investigation of its photoelectrochemical behavior” Applied physics letters 95 093108 - 093108-3 2009
    36. Mura, F; Masci, A ; Pasquali, M; Pozio, A “Stable TiO2 nanotubes arrays with high UV photoconversion efficiency” Electrochim Acta 55 2246-2251 2010
    37. Macak, JM; Zlamal, M; Krysa, J ”Self-organized TiO2 nanotube layers as highly efficient photocatalysts” Small 3 300 – 304 2007
    38. Mavroides, JG; Tchernev, DI; Kafalas, JA “Photoelectrolysis of water in cell with TiO2 anodes” Materials research bulletin 10 1023-1030 1975
    39. Banfied, JF; Bischoff, BL; Anderson, MA “TiO2 accessory minerals- coarsening, and transformation kinetics in pure and doped synthetic nanocrystalline materials” Chemical geology 110 211-231 1993
    40. Sclafani, A; Herrmann, JM “Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions” Journal of physical chemistry 100 163-69131 1996
    41. Sclafani, A; Palmisano, L; Schiavello, M “Influence of the preparation methods of TiO2 on the photocatalytic degradation of phenol in aqueous dispersion” Journal of physical chemistry 94 829-832 1990
    42. Ding, Z; Lu, GQ; Greenfield, PF “Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water” Journal of physical chemistry B 104 4815-4820 2000
    43. Wiberg, E; Frederick, A Holleman Inorganic Chemistry, Elsevier 2001
    44. Yeh, CY; Lu, ZW; Froyen, S “Zinc-blende-wurtzite polytypism in semiconductors” Physical review B 46 10086-10097 1992
    45. Macintyre, JE; Daniel, FM; Stirling, VM Dictionary of Inorganic Compounds-Chemical Database, Editions, Charpman and Hall
    46. Yoffe, AD “Synthesis and characterization of CdS nanoparticles in polystyrene microfibers” Applied physics 42 173 1993
    47. Vossmeyer, T; Katsikas, L; Giersig, M “CdS nanoclusters-synthesis, characterization, size-dependent oscillator strength, temperature shift of the excitonic-transition energy, and reversible absorbency shift” Journal of physical chemistry 98 7665-7673 1994
    48. 徐國淦, ”以化學浴沉積法製備CdS/TiO2光陽極進行光電化學產氫之研究” 成功大學化工系碩士論文 2010
    49. Barreca, D; Gasparotto, A; Maragno, C; Tondello, E “CVD of nanosized ZnS and CdS thin films from single-source precursors” Journal of the electrochemical society 151 G428-G435 2004
    50. Zheng, J; Song, XB; Chen, N “Highly symmetrical CdS tetrahedral nanocrystals prepared by low-temperature chemical vapor deposition using polysulfide as the sulfur source” Crystal growth & design 8 1760–1765 2008
    51. Tsuji, M; Aramoto, T; Ohyama, H “Characterization of CdS thin film in high efficient CdS/CdTe solar cells” Journal of crystal growth 214 1142-1147 2000
    52. Rowlands, RL; Barrioz, V; Jones, EW “The application of a statistical methodology to investigate deposition parameters in CdTe/CdS solar cells grown by MOCVD” Journal of materials science-materials in electronics 19 639-645 2008
    53. Kokotov, M; Hodes, G “Influence of selective nucleation on the one step chemical bath deposition of CdS/ZnO and CdS/ZnS composite films” Chemistry of materials 22 5483–5491 2010
    54. Ortuno-Lopez, MB; Sotelo-Lerma, M; Mendoza-Galvan, A "Chemically deposited CdS films in an ammonia-free cadmium-sodium citrate system" Thin solid films 457 278-284 2004
    55. Shirai, K; Moriguchi, Y; Ichimura, M “Relationship between Raman Spectra and Crystallinity of CdS Films Grown by Cathodic Electrodeposition” Japnese Journal of Applied physics 35 2057-2060 1996
    56. Diso, DG; Muftah, GEA; Patel, V “Growth of CdS layers to develop all-electrodeposited CdS/CdTe thin-Film Solar Cells” Journal of the electrochemical society 157 H647-H651 2010
    57. Sasikala, G; Dhanasekaran, R; Subramanian, C “Electrodeposition and optical characterization of CdS thin films on ITO-coated glass” Thin solid films 302 71-76 1997
    58. Banerjee, S; Mohapatra, SK; Das, PP “Synthesis of Coupled Semiconductor by Filling 1D TiO2 nanotubes with CdS” Chemistry of materials 20 6784–6791 2008
    59. Nishino, J; Chatani, S, Uotani, Y “Electrodeposition method for controlled formation of CdS films from aqueous solutions” Journal of electroanalytical chemistry 473 217-222 1999
    60. Chi, YJ; Fu, HG; Qi, LH “Preparation and photoelectric performance of ITO/TiO2/CdS composite thin films” Journal of photochemistry and photobiology A: Chemistry 195 357-363 2008
    61. Takahashi, M; Hasegawa, S; Watanabe, M ”Preparation of CdS thin films by electrodeposition : effect of colloidal sulfur particle stability on film composition” Journal of applied electrochemistry 32 359-367 2002
    62. Izgorodin, A; Winther-Jensen, O; Winther-Jensen, B ”CdS thin-film electrodeposition from a phosphonium ionic liquid” Physical chemistry chemical physics 11 8532-8537 2009
    63. Yin, YX, Jin, ZG, Hou, F “Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays” Nanotechnology 18 495608 2007
    64. Song, XM; Wu, JM; Yan, M “Distinct visible-light response of composite films with CdS electrodeposited on TiO2 nanorod and nanotube arrays“ Electrochemistry communications 11 2203-2206 2009
    65. Wang, CL, Sun L, Xie KP, Lin CJ “Controllable incorporation of CdS nanoparticles into TiO2 nanotubes for highly enhancing the photocatalyticresponse to visible light” Science in China Series B: Chemistry 52 2148-2155 2009
    66. Hoyer, P “Formation of a titanium dioxide nanotube array” Langmuir 12 1411–1413 1996
    67. Imai, H; Takei, Y; Shimizu, K “Direct preparation of anatase TiO2 nanotubes in porous alumina membranes” Journal of materials chemistry 9 2971-2972 1999
    68. Lakshmi, BB; Patrissi, CJ; Martin, CR “Sol-gel template synthesis of semiconductor nanostructures” Chemistry of materials 9 857–862 1997
    69. Michailowski, A; AlMawlawi, D; Cheng, GS “Highly regular anatase nanotubule arrays fabricated in porous anodic templates” Chemical physics letters 349 1-5 2001
    70. Jung, JH; Kobayashi, H; van Bommel, KJC “Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template” Chemistry of materials 14 1445–1447 2002
    71. Kobayashi, S; Hamasaki, N; Suzuki, M “Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents” Journal of the american chemical society 124 6550–6551 2002
    72. Nishide, T; Mizukami, F "Effect of ligands on crystal structures and optical properties of TiO2 prepared by sol-gel processes" Thin solid films 353 67-71 1999
    73. Lin, H; Kozuka, H; Yoko, T "Preparation of TiO2 films on self-assembled monolayers by sol-gel method" Thin solid films 315 111-117 1998
    74. Kim, SC; Heo, MC; Hahn, SH "Optical and photocatalytic properties of Pt-photodeposited sol-gel TiO2 thin films" Material letters 59 2059-2063 2005
    75. Yuan, ZF; Li, B; Zhang, JL "Synthesis of TiO2 thin film by a modified sol-gel method and properties of the prepared films for photocatalyst" Journalof sol-gel science and technology 39 249-253 2006
    76. Kasuga, T; Hiramatsu, M; Hoson, A “Formation of titanium oxide nanotube” Langmuir 14 3160–3163 1998
    77. Chen, Q; Zhou, WZ; Du, GH “Trititanate nanotubes made via a single alkali treatment” Advanced materials 14 1208-1211 2002
    78. Yao, BD; Chan, YF; Zhang, XY “Formation mechanism of TiO2 nanotubes” Applied physics letters 82 281 - 283 2003
    79. San Vicente, G; Morales, A; Gutierrez, MT "Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon" Thin solid films 391 133-137 2001
    80. Lee, WJ; Alhoshan, M; Smyrl, WH “Titanium dioxide nanotube arrays fabricated by anodizing processes - Electrochemical properties” Journal of the electrochemical society 153 B499-B505 2006
    81. Perathoner, S; Passalacqua, R; Centi, G “Photoactive titania nanostructured thin films: Synthesis and characteristics of ordered helical nanocoil array” Catalysis today 122 3-13 2007
    82. Bai, J; Zhou, BX; Li, LH “The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte” Journal of materials science 43 1880-1884 2008
    83. Quan, X; Yang, SG; Ruan, XL “Preparation of titania nanotubes and their environmental applications as electrode” Environmental science & technology 39 3770–3775 2005
    84. Cai, QY; Paulose, M; Varghese, OK “The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation” Journal of materials research 20 2005
    85. Paulose, M; Shankar, K; Yoriya, S “Anodic growth of highly ordered TiO2 nanotube arrays to 134 mu m in length” Journal of physical chemistry B 110 16179–16184 2006
    86. Prakasam, HE; Shankar, K; Paulose, M “A new benchmark for TiO2 nanotube array growth by anodization” Journal of physical chemistry C 111 7235–7241 2007
    87. Macak, JM; Tsuchiya, H; Taveira, L “Smooth anodic TiO2 nanotubes” Angewandte chemie-international edition 44 7463–7465 2005
    88. Berger, S; Macak, JM; Kunze, J “High-efficiency conversion of sputtered Ti thin films into TiO2 nanotubular layers” Electrochemical and solid state letters 11 C37–C40 2008
    89. Kasuga, T; Hiramatsu, M; Hoson, A “Formation of titanium oxide nanotube” Langmuir 14 3160–3163 1998
    90. Beranek, R; Hildebrand, H; Schmuki, P “Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes” Electrochem solid state letters 6 B12–B14 2003
    91. Palmas, S; Polcaro, AM; Ruiz, JR “TiO2 photoanodes for electrically enhanced water splitting” International Journal of hydrogen Energy 35 6561-6570 2010
    92. Zwilling, V; Aucouturier, M; Darque-Ceretti, E “Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach” Electrochimica acta 45 921-929 1999
    93. Gong, D; Grimes, CA; Varghese, OK “Titanium oxide nanotube arrays prepared by anodic oxidation” Journal of materials research 16 3331-3334 2001
    94. Mor, GK; Shankar, K; Paulose, M “Use of highly ordered TiO2 nanotube arrays in dye-sensitized solar cells” Nano letters 6 215-218 2006
    95. Tao, JL; Zhao, JL; Tang, CC “Mechanism study of self-organized TiO2 nanotube arrays by anodization” New journal of chemistry 32 2164-2168 2008
    96. Yasuda, K; Macak, JM; Berger, S “Mechanistic aspects of the self-organization process for oxide nanotube formation on valve metals” Journal of the electrochemical society 154 C472-C478 2007
    97. Nguyen, QAS; Bhargava, YV; Devine, TM “Initiation of Organized Nanopore/Nanotube Arrays in Anodized Titanium Oxide I. Criterion for Initiation” Journal of the electrochemical society 156 E55-E61 2009
    98. Nguyen, QAS; Bhargava, YV; Radmilovic, VR “Structural study of electrochemically synthesized TiO2 nanotubes via cross-sectional and high-resolution TEM” Electrochimica acta 54 4340-4344 2009
    99. Macak, JM; Tsuchiya, H; Ghicov, A “TiO2 nanotubes: Self-organized electrochemical formation, properties and applications” Current opinion in solid state & materials science 11 3-18 2007
    100. Allen J .Bard; Larry R.Faulkner “Electrochemical Methods Fundamentals and Applications” 2001
    101. 吳奉修, “無稽奈米金屬/共軛高分子混層材料作為高分子太陽能電子之研究” 國立中山大學光電工程學系碩士論文 2009
    102. 施敏, 黃調元譯 “半導體元件物理與製作技術” 國立交通大學出版社 2007
    103. Walter, MG; Warren, EL; McKone, JR “Solar Water Splitting Cells” Chemical reviews 110 6446-6473 2010
    104. Bak, T; Nowotny, J; Rekas, M “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects” International Journal of hydrogen Energy 27 991-1022 2002
    105. Nozik, AJ; Memming, R “Physical chemistry of semiconductor-liquid interfaces” Journal of physical chemistry 100 13061–13078 1996
    106. Ghosh, AK; Maruska, HP “Photoelectrolyss of water in sunlight with sensitized seniconductor electrodes” Journal of the electrochemical society 124 1516-1522 1977
    107. Radecka, M; Rekas, M; Trenczek-Zajac, A “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis” Journal of power sources 181 46-55 2008
    108. Bolton, JR “Solar photoproduction of hydrogen: A review” Solar energy 57 37-50 1996
    109. 劉慈薇, “二氧化鈦光電極之製備及其在光電化學法產氫之應用” 成功大學化工系碩士論文 2008
    110. Rami, M; Benamar, E; Fahoume, M “Growth analysis of electrodeposited CdS on ITO coated glass using atomic force microscopy” Physica status solidi A-applied research 172 137-147 1999
    111. Yang, LX; Luo, SL; Liu, RH “Fabrication of CdSe Nanoparticles Sensitized Long TiO2 Nanotube Arrays for Photocatalytic Degradation of Anthracene-9-carbonxylic Acid under Green Monochromatic Light” Journal of physical chemistry C 114 4783–4789 2010
    112. Liu, YB; Zhou, HB; Zhou, BX “Highly stable CdS-modified short TiO2 nanotube array electrode for efficient visible-light hydrogen generation” International Journal of hydrogen Energy 36 167-174 2011
    113. Su, CY; Shao, CL; Liu, YC “Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light” Journal of colloid and interface science 359 220-227 2011
    114. Lai, YK; Lin, ZQ; Chen, Z “Fabrication of patterned CdS/TiO2 heterojunction by wettability template-assisted electrodeposition” Materialsl letters 64 1309-1312 2010
    115. Chi, CF; Liau, SY; Lee, YL ”The heat annealing effect on the performance of CdS/CdSe-sensitized TiO2 photoelectrodes in photochemical hydrogen generation" Nanotechnology 21 025202 2010
    116. Fan, YZ; Deng, MH; Chen, GP “Effect of calcination on the photocatalytic performance of CdS under visible light irradiation” Journal of alloys and compound. 509 1477-1481 2011
    117. So, WW; Kim, KJ; Moon, SJ “Photo-production of hydrogen over the CdS–TiO2 nano-composite particulate films treated with TiCl4” International journal of hydrogen Energy 29 229-234 2004
    118. Chi, CF; Lee, YL; Weng, HS “A CdS-modified TiO2 nanocrystalline photoanode for efficient hydrogen generation by visible light” Nanotechnology 19 125704 2008
    119. Lee, YL; Chi, CF; Liau, SY “CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell” Chemistry of materials 22 922–927 2010

    下載圖示 校內:2014-08-26公開
    校外:2014-08-26公開
    QR CODE