簡易檢索 / 詳目顯示

研究生: 陳靜怡
Chen, Jing-Yi
論文名稱: 零價鐵金核殼奈米粒子在正常和口腔癌上皮細胞內結構轉變與分子訊息傳遞以及區別性癌細胞毒殺機制的探討
Structural conversion and molecular signaling of ZVI@Au nanoparticles in normal versus oral cancer cells and the differential cytotoxicity mechanism
指導教授: 謝達斌
Shieh, Dar-Bin
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 62
中文關鍵詞: 零價鐵奈米粒子芬頓反應選擇性細胞毒性結構電子顯微鏡元素分析基因表現
外文關鍵詞: Fenton reaction, nanoparticles, selective cytotoxicity, structure, zero valent iron
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 零價鐵(ZVI)是廣泛用於淨化受污染土壤和地下水環境的材料,然而其對生命系統的影響很少被討論。先前實驗發現含有ZVI的奈米粒子在治療劑量範圍下對癌細胞具有明顯細胞毒性而正常細胞則無,且癌細胞和健康細胞間總鐵攝取量無顯著差異。奈米粒子僅在癌細胞中能快速降解並釋放鐵離子到胞內,而在正常細胞內則保留大部分為奈米粒子的形式,釋放出來的鐵離子比例很低。本研究藉由穿透式電子顯微鏡觀察口腔癌細胞(OECM-1)、抗藥性細胞株(R3)及健康細胞(HNOK)分別以ZVI @ Au NPs作用1、8、24小時後,從細胞內純化的奈米粒子結構的變化。從穿透式電子顯微鏡的影像可發現口腔癌細胞株曝露在ZVI@Au奈米粒子下,隨著時間奈米粒子會出現明顯的結構改變:從完整的圓形奈米粒子經細胞吞噬後,逐漸出現中空化的現象,甚至結構破裂的情況,然而在正常健康細胞吞噬後,奈米粒子的結構仍然保持完整。另外從元素分析的結果發現,在口腔癌細胞株吞噬後的奈米粒子的ZVI核心其鐵元素比例大幅下降,只剩下外殼的金元素訊號,顯示ZVI@Au在進入細胞後其不穩定的ZVI核心受到侵蝕轉變成鐵離子而流失,而穩定的金原子外殼不易被轉化成金離子則明顯保留其外殼的形狀;然而,正常健康細胞內的ZVI@Au奈米粒子幾乎完好無損。進一步發現加入ZVI@Au奈米粒子後的細胞內結構變化與鐵離子釋放和氧自由基的產生與代謝機制有關。我們觀察到氧自由基僅在ZVI@Au處理的OEC-M1中顯著增加,但在R3或hNOK中沒有顯著增加。抗性細胞株R3雖然仍可觀察到ZVI核心侵蝕,但R3的氧自由基代謝基因xCT,AKR1B10和AKR1C3的高表達,是讓細胞免受由ZVI @ Au暴露導致的氧化反應刺激所影響,這與hNOK中的分子機制截然不同。簡而言之, ZVI @ Au可作為ZVI的癌症選擇性和控制釋放遞送系統,本研究揭示了細胞如何通過穀胱甘肽(GSH)和煙酰胺腺嘌呤二核苷酸(NAD)代謝系統平衡ZVI攻擊的分子機制。我們相信ZVI @ Au可用作癌症選擇性鐵庫,用於未來的癌症治療,做為精準奈米醫療的重要分子標靶藥物。

    In previous study, we found that ZVI containing nanoparticles (NPs) are cytotoxic to cancer cell but do not significantly affect normal cells under the proposed therapeutic dosage range. To further explore the underlying mechanisms of ZVI-based NPs in cancer-selective cytotoxicity, the aqueous synthesis method to fabricate ZVI@Au NPs and integrated approaches of structural biology and molecular biology was applied in this study. These NPs presented different structural changes in the time points of 1, 8, and 24 hours among oral cancer line (OEC-M1), ZVI resistant OEC-M1 line (R3) and healthy normal keratinocyte (HNOK) under TEM. NPs in OECM-1 and R3 showed a rapid degradation of the NPs within the first hour treatment, leaving a hollow sphere of Au shell when observed under energy dispersive X-ray spectroscopy mapping, whereas the NPs within hNOK remained almost intact. The reactive oxygen species (ROS) dramatically increased in ZVI@gold treated OEC-M1 but not in R3 or in hNOK. Through molecular biology approaches, the ZVI resistant cells, R3, still presented significant degradation of ZVI core components. The expression of xCT, AKR1B10, and AKR1C3 were elevated in R3 in response to ZVI@Au treatment compared to OEC-M1, suggesting the important roles of these genes in protecting cancer cells from ZVI@Au induced cell death. However, in hNOK, GSR and AKR1C3 expression were suppressed by ZVI@Au, while other anti-ferroptosis genes such as xCT, GPx-4, NRF2, AKR1B1, AKR1B10, and AKR1C1 were induced to highly express thus to protect hNOK from further damage. In summary, ZVI@Au may serve as a cancer-selective and controlled-release system of ZVI. This research shed a light on the molecular mechanisms for how cells balanced the ZVI challenge through glutathione and nicotinamide adenine dinucleotide metabolic system. We believe that ZVI@Au could be applied as a new class of cancer-selective iron reservoirs for advanced cancer therapy.

    中文摘要 II English abstract IV Acknowledgement VI Content VII List of figures IX Abbreviations XI Chapter 1. Introduction 1 1.1 From tradition to advanced clinical disease management of oral cancer 2 1.1.1 Epidemiology and traditional approaches of oral cancer clinical management 2 1.1.2 New concepts and trials in oral cancer therapy 3 1.2 Applications of nanomedicine in oral cancer therapy 4 1.2.1 Traditional concept of nanomedicine 4 1.2.2 The emerging concept of nanomedicine 5 1.3 ROS plays significant roles in both carcinogenesis and anti-cancer therapy 6 1.4 The potential mechanisms of ROS induction in cancerous cells triggered by nanomedicine 7 1.5 The ZVI@Au nanoparticles 8 1.6 ZVI nanoparticle-resistance in cancers and potential biomarkers of therapeutic sensitivity 10 1.7 Rationale 11 Chapter 2. Materials and methods 12 2.1 Synthesis of ZVI@Au nanoparticles 13 2.2 The characterization of ZVI@Au nanoparticles 13 2.3 Cell culture and cell survival assays 14 2.4 Intracellular ROS analysis 15 2.5 Western blot analysis 16 2.6 RNA extration and qPCR analysis 17 Chapter 3. Results 20 3.1 Ultrastructural and elemental composition characterization of ZVI@Au nanoparticles 20 3.2 The viability of cancer versus normal cells at different time points after ZVI@Au exposure 20 3.3 Intracellular structural transformation of ZVI@Au-L NPs and EDS analysis at different time points after administration 21 3.4 The ZVI@Au NPs ROS analyze in cells 22 3.5 Expression of cell death related proteins affected by ZVI@Au treatment 23 3.3 Expression of ROS management associated gene affected by ZVI@Au NPs treatment in paired ZVI@CMC sensitive versus resistant oral cancer line and human oral keratinocytes 24 Chapter 4. Discussion 29 Chapter 5. Conclusion 37 References 40 Figures 44 Tables 61 Schemes 62

    1. Torre, L.A., et al., Global cancer statistics, 2012. CA Cancer J Clin, 2015. 65(2): p. 87-108.
    2. Min, M.K., M.H. Zhu, and H.L. Zheng, [Recent advances in early diagnosis of head and neck cancer in precision medicine era]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, 2017. 31(22): p. 1770-1774.
    3. Moskovitz, J., J. Moy, and R.L. Ferris, Immunotherapy for Head and Neck Squamous Cell Carcinoma. Curr Oncol Rep, 2018. 20(2): p. 22.
    4. Nahta, R. and F.J. Esteva, Herceptin: mechanisms of action and resistance. Cancer Lett, 2006. 232(2): p. 123-38.
    5. Rapidis, A.D. and G.T. Wolf, Immunotherapy of head and neck cancer: current and future considerations. J Oncol, 2009. 2009: p. 346345.
    6. Petruzzi, M.N., et al., Role of tumour-associated macrophages in oral squamous cells carcinoma progression: an update on current knowledge. Diagn Pathol, 2017. 12(1): p. 32.
    7. Babu, S.J., et al., Immune checkpoint blockade therapy in head and neck cancer: a review. Update Dental College Journal, 2018. 8(2): p. 30-33.
    8. Blanco, E., H. Shen, and M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol, 2015. 33(9): p. 941-51.
    9. Immordino, M.L., F. Dosio, and L. Cattel, Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine, 2006. 1(3): p. 297-315.
    10. Marcazzan, S., et al., Nanomedicine, an emerging therapeutic strategy for oral cancer therapy. Oral Oncol, 2018. 76: p. 1-7.
    11. Virupakshappa, B., Applications of nanomedicine in oral cancer. Oral Health Dent Manag, 2012. 11(2): p. 62-8.
    12. Leucuta, S.E., Systemic and biophase bioavailability and pharmacokinetics of nanoparticulate drug delivery systems. Curr Drug Deliv, 2013. 10(2): p. 208-40.
    13. De Jong, W.H. and P.J. Borm, Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine, 2008. 3(2): p. 133-49.
    14. Saha, S., et al., Gold Nanoparticle Reprograms Pancreatic Tumor Microenvironment and Inhibits Tumor Growth. ACS Nano, 2016. 10(12): p. 10636-10651.
    15. Lei, R., et al., Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol, 2008. 232(2): p. 292-301.
    16. Kroll, A., et al., Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm, 2009. 72(2): p. 370-7.
    17. Wu, Y.N., et al., Cancer-cell-specific cytotoxicity of non-oxidized iron elements in iron core-gold shell NPs. Nanomedicine, 2011. 7(4): p. 420-7.
    18. Pawlowska, E. and J. Blasiak, DNA Repair--A Double-Edged Sword in the Genomic Stability of Cancer Cells--The Case of Chronic Myeloid Leukemia. Int J Mol Sci, 2015. 16(11): p. 27535-49.
    19. Benedetti, S., et al., Reactive oxygen species a double-edged sword for mesothelioma. Oncotarget, 2015. 6(19): p. 16848-65.
    20. Huang, K.J., et al., Assessment of zero-valent iron-based nanotherapeutics for ferroptosis induction and resensitization strategy in cancer cells. Biomater Sci, 2019. 7(4): p. 1311-1322.
    21. Wu, Y.N., et al., The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials, 2011. 32(20): p. 4565-73.
    22. Ralph, S.J., et al., The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy. Mol Aspects Med, 2010. 31(2): p. 145-70.
    23. Prasad, S., S.C. Gupta, and A.K. Tyagi, Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett, 2017. 387: p. 95-105.
    24. Srivastava, S.K., et al., Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem Biol Interact, 2011. 191(1-3): p. 330-8.
    25. Zhao, X., et al., An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res, 2016. 100: p. 245-266.
    26. Kayal, S. and R.V. Ramanujan, Anti-Cancer Drug Loaded Iron–Gold Core–Shell Nanoparticles (Fe@Au) for Magnetic Drug Targeting. Journal of Nanoscience and Nanotechnology, 2010. 10(9): p. 5527-5539.
    27. Ho, D., X. Sun, and S. Sun, Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res, 2011. 44(10): p. 875-82.
    28. Wu, Y.N., et al., Characterization of Iron Core(-)Gold Shell Nanoparticles for Anti-Cancer Treatments: Chemical and Structural Transformations During Storage and Use. Materials (Basel), 2018. 11(12).
    29. Bae, S. and K. Hanna, Reactivity of Nanoscale Zero-Valent Iron in Unbuffered Systems: Effect of pH and Fe(II) Dissolution. Environ Sci Technol, 2015. 49(17): p. 10536-43.
    30. Terskikh, V.V. and A.V. Vasil'ev, [Apoptosis and differentiation of epidermal keratinocytes]. Ontogenez, 2005. 36(2): p. 85-9.
    31. Hammond, C.L., T.K. Lee, and N. Ballatori, Novel roles for glutathione in gene expression, cell death, and membrane transport of organic solutes. J Hepatol, 2001. 34(6): p. 946-54.
    32. Liu, H., D.W. Chang, and X. Yang, Interdimer processing and linearity of procaspase-3 activation. A unifying mechanism for the activation of initiator and effector caspases. J Biol Chem, 2005. 280(12): p. 11578-82.
    33. Petrash, J.M., All in the family: aldose reductase and closely related aldo-keto reductases. Cell Mol Life Sci, 2004. 61(7-8): p. 737-49.
    34. Nakamura, T., I. Naguro, and H. Ichijo, Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim Biophys Acta Gen Subj, 2019. 1863(9): p. 1398-1409.
    35. Doll, S., et al., ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol, 2017. 13(1): p. 91-98.
    36. Muller, T., et al., Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell Mol Life Sci, 2017. 74(19): p. 3631-3645.

    下載圖示 校內:2024-08-31公開
    校外:2024-08-31公開
    QR CODE