| 研究生: |
黃雅祺 Huang, Ya-Chi |
|---|---|
| 論文名稱: |
模糊環境下產品保證之研究 |
| 指導教授: |
林清河
Lin, Chin-Ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 保固成本 、保固期 、模糊可靠度 |
| 相關次數: | 點閱:43 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨者產品製造技術提升,產品所面對的製造與使用環境趨向複雜化,在消費者意識高漲的情況下,賣方紛紛將產品保固當成一項商品的形式販賣。然而傳統保固期的估算,多以布林邏輯(Boolean)與機率演算(Probability Computation)加以評估可靠度工程,但是真實的世界中存在著許多似是而非的現象,也就是說它不再是傳統的集合理論中非此即彼的觀念,即嚴重失效與可維修之間存在著一個中間過渡狀態,這種過渡的連續性造成劃分的不確定性,Zadeh(1965)提出模糊的觀念也就應需而生。
本研究考量廠商所制定保固契約中,產品失效後的維修策略為小修理與置換策略,然而廠商對未知的小修理與置換策略,若無法擁有完整的經驗與維修資訊,零件的可靠度將充滿著模糊(fuzziness)不確定,並非只具有隨機性,對於可靠度機率模型的評估上僅能決定失效率,卻不足以反應不確定性下的小修理與置換行為。
此時傳統的明確集合模糊化,利用 α-cut的概念,推廣至模糊集合,使決策者更可針對產品失效狀態與經驗、資訊收集是否明確,來取得保固成本,再透過產品保固價格估算與保固成本之差,依據模糊推演,求得產品保固成本與廠商維修經驗與資訊是否充分有著反向之關係,廠商若有充份的維修經驗與資訊,將符合傳統可靠度之模式,保固成本也會降低。
none
1.徐自強,民82,「產品的保固期與可靠度」,品質管制月刊,頁33-36。
2.楊澤民、黃俊堯,民90,「船體縱向結構之模糊疲勞可靠度分析」,中國造船暨輪機工程學刊,第二十卷,第三期,第53頁至第62頁。
3.Amato, H.N. and Anderson, E.E. (1976), “Determination of warranty reserves: an extension,” Management Science Vol.22, No.12, pp.1391-1394.
4.Bai, J. and Pham, H. (2004), “Cost analysis on renewable full-service warranties for multi-component systems,” European Journal of Operational Research, article in press.
5.Bai, J. and Pham, H. (2004), “Discounted warranty cost of minimally repaired series systems,” IEEE Transactions on Reliability, Vol.53, No.1, pp37-42.
6.Barlow, R.E., and Hunter, L.C. (1960), “Optimum preventive maintenance policies,” Operations Research, Vol.8, pp.90-100.
7.Barlow, R.E. (1984), “Mathematical theory of reliability :a historical perspective,” IEEE Transactions on Reliability,Vol.33, pp.16-20.
8.Biondini, F., Bontempi, F., Malerba, P. G. (2004), “Fuzzy reliability analysis of concrete structures,” Computers and Structures, Vol. 82, No.13-14, pp.1033-1052.
9.Blischke, W.R. and Murthy, D.N.P. (1994), “Warranty Cost Analysis,” Marcel Dekker, New York.
10.Boland, P. J. and Proschan, F. (1982), “Periodic replacement with increasing minimal repair costs at failure,” Operations Research, Vol.30, pp.1183-1189.
11.Boland, P.J. (1982), “Periodic replacement when minimal repair cost vary with time,” Naval Research Logistics Quarterly, Vol.29, pp.541-546.
12.Boom, A. (1998), “Product risk sharing by warranties in a monopoly market with risk-averse consumers,” Journal of Economic Behavior & Organization, Vol.33, No.2, pp.241-257.
13.Cai K.Y., Wen C.Y., and Zhang M.L. (1991), “Fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context,” Fuzzy Sets and Systems, Vol.42, pp.145-172.
14.Chen, B. and Liu, X. (2004), “Reliable control design of fuzzy dynamic systems with time-varying delay,” Fuzzy Sets and Systems, Vol.146, No.3, September 16, pp.349-374.
15.Cheng, C.H. (1996), “Fuzzy repairable reliability based on fuzzy gert,” Microelectronics and Reliability, Vol.36, No.10, pp.1557-1563.
16.Chukova, S. and Hayakawa,Y. (2004), “Warranty cost analysis: non-renewing warranty with repair time,” Applied Stochastic Models in Business and Industry, Vol.20, No.1, pp.59-71.
17.Courville, L., and Hausman, W.H. (1979), “Warranty scope and reliability under imperfect information and alternative market structure,” Journal of Business, Vol.52, No.3, pp.361-378.
18.DeCroix, G.A. (1999), “Optimal warranties, reliabilities and prices for durable goods in an oligopoly,” European Journal of Operational Research, Vol.112, No.3, pp.554-569.
19.Douglas, E.J., Glennon, D.C., and Lane, J.I. (1993), “Warranty, quality and price in US Automobile market,” Applied Economic Vol.25, No.2, pp.135-141.
20.Eliashberg, J., Singpurwalla, N.D. and Wilson, S.P. (1997), “Calculating the reserve for a time and usage indexed warranty,” Management Science, Vol.43, No.7, pp.966-975.
21.H.J. Zimmermann (1983), “Using fuzzy sets in operational research,” European Journal of Operational Research, Vol.13, pp.201-216.
22.Hakan ,P.and Izzet, S. (1998), “Probability distributions of cost, revenue and profit over a warranty cycle,” European Journal of Operational Research, Vol.108, No.1, pp.170-183.
23.Huang, H.Z. (1995), “Reliability analysis method in the presence of fuzziness attached to operating time,” Microelectronics and Reliability, Vol.35, No.12, pp.1483-1487.
24.Huang, Y. S. and Zhuo, Y. F. (2004), “Estimation of future breakdowns to determine optimal warranty policies for products with deterioration,” Reliability Engineering and System Safety, Vol.84, No.2, pp.163-168.
25.Iskandar, B.P., Murthy, D.N.P. and Jack, N. (2005), “A new repair–replace strategy for items sold with a two-dimensional warranty,” Computers and Operations Research, Vol.32, No.3, pp.669-682.
26.Jhang, J.P. and Sheu, S.H. (1995), “Opportunity-based age replacement policy with minimal repair,” Reliability Engineering and System Safety, Vol.64, No.3, June, pp.339-344.
27.Jiang, Q. and Chen, C.H. (2003), “A numerical algorithm of fuzzy reliability,” Reliability Engineering and System Safety, Vol.80, No.3, June, pp.299-307.
28.Juang, C.F. (2004), “Temporal problems solved by dynamic fuzzy network based on genetic algorithm with variable-length chromosomes,” Fuzzy Sets and Systems, Vol.142, No.2, pp.199-219.
29.Juang, M.G. and Anderson, G. (2004), “A Bayesian method on adaptive preventive maintenance problem”, European Journal of Operational Research, Vol.155, No.2, June 1, pp.455-473.
30.Kao, E.P.C. and Smith, M.S. (1993), “Discounted and per unit net revenues and costs of product warranty: the case of phase-type lifetimes,” Management Science, Vol.39, No.10, pp.1246-1254.
31.Kar, T.R., and Nachlas, J.A. (1997), “Coordinated warranty & burn-in strategies,” IEEE Transactions on Reliability Vol.46, No.4, pp.512-518.
32.Kaufmann, A. (1975), “Introduction to the Fuzzy Subsets,” Vol.1, Academic Press, New York.
33.Kim, C.S., Djamaludin, I. and Murthy, D.N.P. (2004), “Warranty and discrete preventive maintenance,” Reliability Engineering and System Safety, Vol.84, No.3, pp.301-309.
34.Kotler, P. (1976), “Marketing Management-Analysis,” Planning and Control,”3rd edition, Englewood Cliffs, N.J., Prentice_Hall.
35.Li, B., Zhu ,M. and Xu, K. (2000), “A practical engineering method for fuzzy reliability analysis of mechanical structures,” Reliability Engineering and System Safety, Vol.67, No.3, pp.311-315.
36.Lin, C., Shen, S.Y., Yen, Y.J. and Ding, J.R. (2001), “Dynamic optimal control policy in advertising price and quality,” International Journal of Systems Science, Vol.32, No.2, pp.175-184.
37.Lin, P.C and Shue, L.Y. (2005), “Application of optimal control theory to product pricing and warranty with free replacement under the influence of basic lifetime distributions,” Computers and Industrial Engineering, Vol.48, No.1, pp. 69-82.
38.Mamer, J.W. (1987), “Discounted and per unit costs of product warranty,” Management Science, Vol.33, No.7, pp.916-930.
39.Mi, J. (1999), “Comparisons of renewable warranties,” Naval Research Logistics, Vol.46, No.1, pp.91-106.
40.Mitra, A. and Patankar, J. G. (1997), “Market share and warranty costs for renewable warranty programs,” International Journal of Production Economics, Vol.50, No.3, pp.155-168.
41.Monga, A. and Zuo, M.J. (1998), “Optimal system design considering maintenance and warranty,” Computer & Operations Research, Vol.25, No.9, pp.691-705.
42.Monroe, K. B. and Krishnan, R. (1978), “Models for pricing decision,” Journal of Marketing Research, Vol.15, pp.413-428.
43.Murthy, D.N.P. and Djamaludin, I. (2002), “New product warranty: A literature review,” Int. J. Production Economics, Vol.79, No.3, pp.231-260.
44.Muth, E. (1977), “An optimal decision rule for repair v.s. replacement,” IEEE Transactions on Reliability, Vol.26, pp.179-181.
45.Nakagawa, T., and Kowada, M. (1983), “Analysis of a system with minimal repair and its application to replacement policy,” European Journal of Operational Research, Vol.12, pp.176-182.
46.Onisawa T., and Kacprzyk J. (1995), “Reliability and safety analyses under Fuzziness,” Heidelberg: Physica-Verlag.
47.Peterson, R.A. (1970), “The price-perceived quality relationship Experimental evidence,” Journal of Marketing Research, November, pp.525-528.
48.Polatoglu, H. and Sahin, I. (1998), “Probability distributions of cost, revenue and profit over a warranty cycle,” European Journal of Operational Research, Vol.108, No.1, pp.170-183.
49.Qian, C., Nakamura, S. and Nakagawa, T. (2003), “Replacement and minimal repair policies for a cumulative damage model with maintenance,” Computers and Mathematics with Applications, Vol.46, No.7, October, pp.1111-1118.
50.Ritchken, P.H. (1985), “Warranty policies for non-repairable items under risk aversion,” IEEE Transactions on Reliability, Vol.34, pp.147-150.
51.Savits, T.H. (1988), “Some multivariate distributions derived from a non-fatal shock model,” Applied Probability Trust, Vol.25, pp.383-390.
52.Sheu, S.H. (1993), “A generalized model for determining optimal number of minimal repairs before replacement,” European Journal of Operational Research, Vol.69, pp.38-49.
53.Sheu, S.H. (1999), “Extended optimal replacement model for deteriorating systems,” European Journal of Operational Research, Vol.112, No.3, pp.502-516.
54.Sheu, S.H., Griffith, W.S., and Nakagawa, T. (1995), “Extended optimal replacement model with random minimal repair costs,” European Journal of Operational Research, Vol.85, No.3, pp.636-649.
55.Shooman, M.L. (1984), “Software reliability: A historical perspective,” IEEE Transactions on Reliability, Vol.33, No.1, pp.48-55
56.Thomas, M.U. and Rao, S.S. (1999), “Warranty economic decision models: A summary and some suggested directions for future research,” Operation Research, Vol.47, No.6, pp.807-820.
57.Thomas, M.U. (1989), “A prediction model for manufacturer warranty reserves,” Management Science, Vol.35, No.12, pp.1515-1519.
58.Tilquin, C., and Cléroux, R. (1975), “Periodic replacement with minimal repair at failure and general cost function,” Journal of Statistical Computation Simulation, Vol.4, pp.63-67.
59.Wang, C.H. and Sheu, S.H. (2003), “Determining the optimal production–maintenance policy with inspection errors: using a Markov chain,” Computers and Operations Research, Vol.30, No.1, pp.1-17.
60.Wang, C.H. and Sheu, S.H. (2003), “ Optimal lot sizing for products sold under free-repair warranty,” European Journal of Operational Research, Vol.149, No.1, pp.131–141.
61.Wu, H.C. (2004), “Bayesian system reliability assessment under fuzzy environments,” Reliability Engineering and System Safety, Vol.83, No.3, pp.277-286.
62.Yeh, J.M., Kreng, B. and Lin. C. (2001), “A consensus approach for synthesizing the elements of comparison matrix in the Analytic Hierarchy Process,” International Journal of Systems Science, Vol.32, No.11, pp.1353-1363.
63.Yeh, R. H.and Lo, H.C. (2001), “Optimal preventive-maintenance warranty policy for repairable products,” European Journal of Operational Research, Vol.134, No.1, pp.59-69.
64.Yun, W. Y., Lee, Y. W. and Ferreira, L. (2002), “ Optimal burn-in time under cumulative free replacement warranty,” Reliability Engineering and System Safety, Vol.78, No.2, pp.93-100.
65.Zadeh, L.A. (1965), “Fuzzy sets,” Information and Control, Vo1.8, pp.338-353
66.Zeithaml, V.A. (1988), “Consumer response to in-store price information environments,” Journal of Consumer Research, March, Vol.8, pp.357-369.
67.Zuo, M.J., Liu, B., and Murthy, D.N.P. (2000), “Replacement-repair policy for multi-state deteriorating products under warranty,” European Journal of Operational Research, Vol.123, No.3, pp.519-530.