簡易檢索 / 詳目顯示

研究生: 李柏翰
Lee, Bo-Han
論文名稱: 具有可切換式新型變容器LC壓控振盪器之2.4GHz次取樣鎖相迴路
2.4GHz Sub-Sampling PLL with IMOS-Based Varactor LC Voltage-Controlled Oscillator
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 73
中文關鍵詞: 次取樣鎖相迴路電感電容壓控振盪器IMOS-based可變電容
外文關鍵詞: sub-sampling phase locked loop (PLL), LC-VCO, IMOS-based varactor
相關次數: 點閱:161下載:80
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個應用於2.4 GHz ISM band的鎖相迴路設計,內含兩個部份:第一部份為鎖相迴路的其中一個子電路壓控振盪器設計;第二部份為完整的鎖相迴路電路設計,將子電路全部整合起來,以電路的操作電壓均為1.8伏特下去做設計。在第一顆壓控振盪器的部份採用新型的變容器來當作可變電容,並且搭配開關使整體的電容變化增加,所以電容整體的變化可以從0.82 pF到1.66 pF,在量測的部份整體的頻率可調範圍為2.59 GHz到2.15 GHz (18.6%),比較和模擬時的2.792 GHz到2.2 GHz (23.7%)。相位雜訊在最好的部份可以到-121.56 dBc/Hz和模擬時的最好相位雜訊是差不多的,整體的功耗在量測時為6.89 mW。
    第二顆鎖相迴路採用次取樣鎖相迴路設計,包含了兩個迴路:一個為主迴路(core loop)和另一個為頻率鎖住迴路(FLL, frequency locked loop),其中主要迴路採用了次取樣的技術,在採用次取樣的技術有兩大優點:第一優點為相位偵測器和充電泵的雜訊不會隨著除頻器的N上升而雜訊跟著提升N^2倍;第二優點為當頻率鎖上時此時不會提供除頻器的雜訊。本次的參考訊號為37.5 MHz,在直流操作電壓上均為1.8伏特而整體的功耗為8.14 mW,輸出功率為-2.11 dBm,相位雜訊在1 MHz的偏移處為-88.78 dBc/Hz;在10 MHz的偏移處的相位雜訊為-120.8 dBc/Hz。

    This thesis proposes the design a phase locked loop applied to 2.4 GHz in ISM band. It can be divided into two parts. The first part is one of the sub circuits voltage control oscillator useing the IMOS-based varactor LC tank. The second part is a 2.4 GHz sub-sampling PLL which includes the frequency phase detector, charge pump and frequency divider. The operation voltage of all circuits is 1.8 volts. In the part of the first circuit VCO which uses the new type of circuit configuration as the capacitor varactor. it is called the IMOS-baesd varactor, and we also add the switch to change the overall capacitance. The overall capacitance change from 0.82 pF to 1.66 pF. The overall tuning range from the measurement is from 2.59 GHz to 2.15 GHz(18.6%), and the best phase noise at 1 MHz offset is -121.56 dBc/Hz. The overall power is 6.89 mW.
    The second circuit is a 2.4 GHz sub-sampling phase locked loop including two loops. One is the core loop and the other is frequency locked loop (FLL). Since the frequency locked range of the core loop is too small, therefore, it needs a frequency locked loop to make sure the output frequency been locked at the correct frequency. When the reference signal and the divider signal difference exceeding half of a cycle, then the frequency locked loop strats to work for ensuring the difference smaller than half of a cycle. After the moment, the core loop starts to work. The reference frequency is set to 37.5 MHz in the measurement. The overall power is 8.14 mW and the output power is -2.11 dBm. The phase noise at the 1 MHz offset is -88.78 dBc/Hz and the phase noise at the 10 MHz offset is -120.8 dBc/Hz.

    第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 論文架構 4 第二章 可切換式新型變容器的LC壓控振盪器 5 2.1 射頻振盪器簡介 5 2.1.1 壓控振盪器架構比較 5 2.1.2 電感電容共振原理 7 2.1.3 壓控振盪器的FOM 8 2.2 可切換式IMOS-based可變電容簡介 10 2.2.1 傳統可變電容 11 2.2.2 IMOS-based可變電容 13 2.2.3 可切換IMOS-based可變電容分析 14 2.3 電路設計與實現 17 2.3.1 整體電路架構 17 2.3.2 可切換IMOS-based可變電容參數 18 2.3.3 緩衝器設計及參數 18 2.4 模擬結果 19 2.4.1 IMOS-based可變電容模擬結果 20 2.4.2 振盪器模擬結果 22 第三章 具有可切換式新型變容器LC壓控振盪器之2.4GHz次取樣鎖相迴路 25 3.1 鎖相迴路簡介 25 3.1.1 整數與非整數型鎖相迴路 25 3.1.2 鎖相迴路系統分析 28 3.1.3 鎖相迴路雜訊分析 34 3.2 次取樣鎖相迴路簡介 35 3.2.1 次取樣鎖相迴路系統原理 35 3.2.2 次取樣鎖相迴路和傳統鎖相迴路的雜訊分析比較 38 3.3 2.4GHz次取樣鎖相迴路子電路設計與考量 41 3.3.1 次取相鎖相迴路設計 41 3.3.2 次取樣相位偵測器電路及脈衝產生器(pulser)電路設計 42 3.3.3 相位頻率偵測器電路及死區(dead zone)電路設計 44 3.3.4 充電泵設計 46 3.3.5 迴路濾波器設計 50 3.3.6 壓控振盪器設計 50 3.3.7 除頻器設計 52 3.4 系統模擬結果 53 第四章 量測結果與討論 56 4.1 可切換式新型變容器的LC壓控振盪器 56 4.1.1 環境量測設置 56 4.1.2 可切換式新型變容器的LC壓控振盪器結果與討論 58 4.2 具有可切換式新型變容器LC壓控振盪器之2.4GHz次取樣鎖相迴路 62 4.2.1 環境量測設置 62 4.2.2 2.4GHz次取樣鎖相迴路結果與討論 65 第五章 結論 67 參考文獻 68

    [1] H. Kim, Design and Optimization for 5G Wireless Communication, Ch.6, pp.197-238, 2020, John Wiley & Sons Ltd.
    [2] L. Xian, L. Wenyuan and W. Zhigong, "A wide tuning range LC-VCO using switched capacitor array technique," 2010 International Symposium on Signals, Systems and Electronics, 2010, pp. 1-4.
    [3] M. Wei, R. Negra, S. Chang and C. Chen, "Wideband complementary CMOS VCO with capacitive-source-degeneration technique," IEEE EUROCON 2017 -17th International Conference on Smart Technologies, 2017, pp. 287-291.
    [4] Y. Yoshihara, H. Sugawara, H. Ito, K. Okada, and K. Masu, “A wide tuning range CMOS VCO using variable inductor,” in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Sep. 2004, pp. 278–281.
    [5] M. Fang and T. Yoshimasu, "A −197.3-dBc/Hz FoMT Wideband LC-VCO IC With a Single Voltage-Controlled IMOS-Based Novel Varactor in 40-nm CMOS SOI," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 10, pp. 4116-4121, Oct. 2020.
    [6] D. Ham and A. Hajimiri, "Concepts and methods in optimization of integrated LC VCOs," IEEE Journal of Solid-State Circuits, vol. 36, no. 6, pp. 896-909, June 2001.
    [7] Roland E. Best. Phase-Locked Loops: Design, Simulation, and Applications, Sixth Edition
    [8] C.Barrett,”Fractional/Integer-N PLL Basics.pdf.” 1999.
    [9] Keliu Shu, E. Sanchez-Sinencio, J. Silva-Martinez and S. H. K. Embabi, "A 2.4-GHz monolithic fractional-N frequency synthesizer with robust phase-switching prescaler and loop capacitance multiplier," IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 866-874, June 2003.
    [10] X. Gao, E. Klumperink and B. Nauta, "Sub-sampling PLL techniques," 2015 IEEE Custom Integrated Circuits Conference (CICC), 2015, pp. 1-8.
    [11] X. Gao, E. A. M. Klumperink, M. Bohsali and B. Nauta, "A Low Noise Sub-Sampling PLL in Which Divider Noise is Eliminated and PD/CP Noise is Not Multiplied by $N ^{2}$," IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3253-3263, Dec. 2009.
    [12] A. Hajimiri, S. Limotyrakis and T. H. Lee, "Jitter and phase noise in ring oscillators," IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pp. 790-804, June 1999.
    [13] A. A. Abidi, "Phase Noise and Jitter in CMOS Ring Oscillators," IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1803-1816, Aug. 2006.
    [14] D. Mai, S. Bui and T. Nguyen, "Design and Analysis of 15.8 GHz LC-VCO Using PMOS Cross Coupled," 2019 31st International Conference on Microelectronics (ICM), 2019, pp. 203-205.

    [15] Y. Wang, J. Xu, K. He, M. Wu and R. Zhang, "A 67.4–71.2-GHz nMOS-Only Complementary VCO With Buffer-Reused Feedback Technique," IEEE Microwave and Wireless Components Letters, vol. 29, no. 12, pp. 810-813, Dec. 2019.
    [16] D. B. Leeson, "A simple model of feedback oscillator noise spectrum," in Proceedings of the IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
    [17] X. Wang, X. Yang, X. Xu and T. Yoshimasu, "2.4-GHz-band low-voltage LC-VCO IC with simplified noise filtering in 180-nm CMOS," 2016 IEEE MTT-S International Wireless Symposium (IWS), 2016, pp. 1-3.
    [18] Behzad Razavi. Design of Analog CMOS Integrated Circuits,McGraw-Hill,2001
    [19] H. Chang, Y. Yeh, Y. Liu, M. Li and K. Chen, "A Low-Jitter Low-Phase-Noise 10-GHz
    Sub-Harmonically Injection-Locked PLL With Self-Aligned DLL in 65-nm CMOS
    Technology," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 3,
    pp. 543-555, March 2014.
    [20] Prof.K.-W. Cheng, Lecture Notes, Dept. of EE, NCKU
    [21] A. A. Ahmad, S. H. Md Ali, N. Kamal, S. R. Abdul Rahman and M. Othman, "Design of Phase Frequency Detector (PFD),Charge Pump (CP) and Programmable Frequency Divider for PLL in 0.18um CMOS Technology," 2018 IEEE International Conference on Semiconductor Electronics (ICSE), 2018, pp. 242-245.

    [22] M. H. Perrott, M. D. Trott and C. G. Sodini, "A modeling approach for /spl Sigma/-
    /spl Delta/ fractional-N frequency synthesizers allowing straightforward noise
    analysis," IEEE Journal of Solid-State Circuits, vol. 37, no. 8, pp. 1028-1038,
    Aug. 2002.
    [23] S. A. Osmany, F. Herzel, K. Schmalz, and W. Winkler, " Phase noise and jitter modeling for fractional-N PLLs, " Adv. Radio Sci., vol. 5, pp. 313-320, 2007
    [24] X. Gao, E. A. M. Klumperink, G. Socci, M. Bohsali and B. Nauta, "Spur Reduction Techniques for Phase-Locked Loops Exploiting A Sub-Sampling Phase Detector," IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1809-1821, Sept. 2010.
    [25] C. Hsu, M. Z. Straayer and M. H. Perrott, "A Low-Noise Wide-BW 3.6-GHz Digital $DeltaSigma$ Fractional-N Frequency Synthesizer With a Noise-Shaping Time-to-Digital Converter and Quantization Noise Cancellation," IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2776-2786, Dec. 2008.
    [26] R. Nonis, N. Da Dalt, P. Palestri and L. Selmi, "Modeling, design and characterization of a new low jitter analog dual tuning LC-VCO PLL architecture," 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512), 2004, pp. IV-553.
    [27] N. Da Dalt, E. Thaller, P. Gregorius and L. Gazsi, "A compact triple-band low-jitter digital LC PLL with programmable coil in 130-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 40, no. 7, pp. 1482-1490, July 2005.
    [28] R. C. H. van de Beek, C. S. Vaucher, D. M. W. Leenaerts, E. A. M. Klumperink and B. Nauta, "A 2.5-10-GHz clock multiplier unit with 0.22-ps RMS jitter in standard 0.18-/spl mu/m CMOS," IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 1862-1872, Nov. 2004.
    [29] T. Lin, C. Ti and Y. Liu, "Dynamic Current-Matching Charge Pump and Gated-Offset Linearization Technique for Delta-Sigma Fractional- $N$ PLLs," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 5, pp. 877-885, May 2009.
    [30] W. Rhee, "Design of high-performance CMOS charge pumps in phase-locked loops," 1999 IEEE International Symposium on Circuits and Systems (ISCAS), 1999, pp. 545-548 vol.2.
    [31] 劉深淵, 楊清淵, “鎖相迴路,” 滄海書局, 2006
    [32] N. Hemapradhap and J. Ajayan, "High speed low-power true single-phase clock divide-by-16/17 dual-modulus prescaler using 130nm CMOS process with a Vdd of 1.2V," 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), 2016, pp. 1-6.
    [33] S. Tooprakai and A. Tudsorn, "A 1.2 V low-power true single-phase clock CMOS 2/3 prescalers," 2014 International Conference on Information Science, Electronics and Electrical Engineering, 2014, pp. 1691-1694.
    [34] D. Sachan, H. Kumar, M. Goswami, and P. K. Misra, “A 2.4 GHz Low Power Low Phase-Noise Enhanced FOM VCO for RF Applications Using 180 nm CMOS Technology,” in Wireless Pers. Commun., Springer, no. 101., pp.391-403, 2018.
    [35] J. Zhu, R. K. Nandwana, G. Shu, A. Elkholy, S. J. Kim and P. K. Hanumolu, "A 0.0021 mm2 1.82 mW 2.2 GHz PLL Using Time-Based Integral Control in 65 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 8-20, Jan. 2017.
    [36] A. Swaminathan, K. J. Wang and I. Galton, "A Wide-Bandwidth 2.4 GHz ISM Band Fractional-$N$ PLL With Adaptive Phase Noise Cancellation," IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2639-2650, Dec. 2007.
    [37] J. Park, D. Kim, R. Jo, J. Jo, Y. Pu and K. Lee, "Multi-band PLL for RF wireless charger at 2.4 GHz and 5.8 GHz," 2020 International SoC Design Conference (ISOCC), 2020, pp. 39-40.
    [38] Y. Huang, C. Liang, H. Huang and P. Wang, "15.3 A 2.4GHz ADPLL with digital-regulated supply-noise-insensitive and temperature-self-compensated ring DCO," in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 270-271.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE