| 研究生: |
張家維 Chang, Chia-wei |
|---|---|
| 論文名稱: |
溶劑輔助滾輪壓印及金屬圖形轉印製程 Roller Imprinting and Metal Transfer Printing by Solvent-Assisted Process |
| 指導教授: |
洪敏雄
Hon, Min-hsiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 奈米壓印 、溶劑輔助壓印 、滾輪壓印 、金屬轉印 |
| 外文關鍵詞: | metal transfer imprinting, roller imprinting, nano-imprinting, sovlent-assisted imprinting |
| 相關次數: | 點閱:161 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
追求輕、薄、短、小的軟性電子元件近來備受矚目,價格便宜、質輕並可撓的高分子材料不遑多讓為其基材之首選。微奈米壓印技術不受光學繞射限制,非但降低設備成本,更大幅提升精微圖案的翻製速率、提高產率,結合連續滾輪設備又將翻製速度推上極致,如何快速、準確、精良地在塑膠基材上進行圖案轉移為當務之急,基於塑膠不耐高溫的材料本質,使現行的熱壓印製程大為受限。於塑膠基材上定義精微金屬圖案以利後續建構元件是軟性電子元件另一重點,半導體製程中普遍施用的黃光微影含有危害塑膠基材的顯影液,因此在摒棄黃光製程後,如何進行金屬圖形定義為其挑戰。
本研究以自製滾輪壓印機台控制阻劑厚度、壓印溫度、滾輪轉速、溶劑量進行溶劑輔助滾輪壓印,在商用PET塑膠基材上以低溫進行稜鏡片(prism sheet)微圖案快速翻製之研究;更以溶劑輔助金屬轉印法於塑膠基材上定義微米級金屬圖形。
在溶劑輔助滾輪壓印部分,PMMA高分子不足的厚度及使PMMA高分子軟化不足、缺少流動性的過低溫度,兩者皆會在壓印過程中造成的聚二甲基矽氧烷(Polydimethylsiloxane,簡稱PDMS)軟性模具壓縮變形,使最終複製的稜鏡片微圖形失真,過快的滾輪轉速產生過大的剪切力造成PDMS模具變形而使圖形複製失敗,過量或過少的溶劑將會使圖形再破壞或複製不完整。以大於25 μm充足的阻劑厚度及36 wt%乙醇溶劑含量,能以100~110 ℃遠低於一般熱壓印操作溫度(130~205 ℃),進行轉速為7.5~8.5 mm.s-1的滾輪壓印,成功在PET基板上完整複製週期為50 μm、高度為25 μm、面積大小為2.5 cm x 3.5 cm的稜鏡片。
溶劑輔助金屬轉印部份,在PDMS軟性模具上沉積金膜,無需進入真空設備,即能藉由PET上旋佈的PMMA黏著層在低溫(60 ℃)條件下成功轉印線寬/線距為2.5 μm/10 μm週期為12.5 μm或4 μm/4 μm週期為8 μm的方形金屬圖形達2 cm x 2 cm面積大小,其片電阻值為7.3 Ω/□。最後更在紙質基材上利用溶劑輔助金屬轉印成功製作線寬/線距為20 μm/20 μm面積達1 cm x 1 cm的金屬圖案。
As the flexible electronics devices arise more and more attention, plastic substrates become popular due to their excellent flexibility, light weight, and low cost. The patterning of fine metal decals on flexible substrate allow the realization of many applications such as OLED, organic solar cell, OFET. How to fabricate and transfer pattern onto the plastic substrate not only precisely but also rapidly is one kind of tough topic. Additionally, the plastic and polymer substances are not high temperature endurable intrinsically. Moreover, the developer used in photolithography is often harmful to organic polymer. In short, for the plastic substrate, it is a challenge to replicate patterns in a low operating temperature and to define fine metal patterns without using aqueous chemicals which do severe harm to organic materials.
We do not only a detail research about the topic of Solvent-Assisted Roller Imprinting Lithography (SA-RIL) to replicate prism sheet by using a homemade roller imprinting machine but also study another topic about Solvent-Assisted Metal Transfer Printing (SA-MTP) both on commercial plastic substrate, PET, at a low operating temperature.
We can fabricate a prism sheet with a period of 50 μm, a height of 25 μm, and a total area of 2.5 cm x 3.5 cm onto plastic substrate at a temperate of 100~110 ℃, and a roller speed of 7.5~8.5 mm.s-1 by SA-RIL. We also transfer fine metal patterns onto PET substrate, the area is 2 cm x 2 cm with a line width of 2.5 μm, a space width of 10 μm, a period of 12.5 μm, or a line width of 4 μm, a space width of 4μm, a period of 8 μm at a low temperature of 60 ℃ by SA-MTP. Finally, we carry out SA-MTP process onto conventional paper and the area of 1 cm x 1 cm with a L/S of 20 μm/20 μm.
[1] S. Y. Chou, P. R. Krauss, and P .J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Applied Physics Letters, 3114-3116, 67(21), 1995.
[2] K. L. Lai, I. C. Leu, and M. H. Hon, “Soft imprint lithography using swelling/deswelling characteristics of a polymer mold and a resist induced by a poor solvent”, Journal of Micromechanics and Microengineering, 19, 037001, 2009.
[3] S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and Z. J Lei, “Sub-10 nm imprint lithography and applications”, Journal of Vacuum. Science Technology B, 2897-3001, 15(6), 1997.
[4] K. Pfeiffer, A. Fink, G. Gruetzner, G. Bleidiessel, H. Schulz, and H. Scheer, “Multistep profiles by mix and match of nanoimprint and UV lithography”, Microelectronic Engineering, 381–387, 57(8), 2001.
[5] P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography”, Journal of Vacuum Science and Technology B, 2965-2969, 17(6), 1999.
[6] Y. N. Xia, G. M. Whitesides, “Soft Lithography”, Annual Review of Materials Science, 153-184, 28, 1998.
[7] Enoch Kim, Younan Xia, X. M. Zhao, and G. M. Whitesides, “ Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers”, Advanced Materials, 653, 9(8), 1997.
[8] N. E. Voicu, S. Ludwigs, E. J. W. Crossland, P. Andrew, and U. Steiner, “Solvent-Vapor-Assisted Imprint Lithography”, Advanced Materials, 757–761, 19, 2007.
[9] D. Y. Khang and H. H. Lee, “Room-temperature imprint lithography by solvent vapor treatment”, Applied Physics Letters, 14, 76(7), February, 2000.
[10] U. Plachetka, M. Bender, A. Fuchs, B. Vratzov, T. Glinsner, F. Lindner, and H. Kurz, “Wafer scale patterning by soft UV-Nanoimprint Lithography”, Microelectronic Engineering, 167–171, 73–74, 2004.
[11] S. W. Youn, M. U. Ogiwara, H. S. Goto, M. H. Takahashi, and R. T. Maeda, “Prototype development of a roller imprint system and its application to large area polymer replication for a microstructured optical device”, Journal of Materials Processing Technology, 76–85, 202, 2008.
[12] S. M. Seo, T. I. Kim, and H. H. Lee, “Simple fabrication of nanostructure by continuous rigiflex imprinting”, Microelectronic Engineering, 567–572, 84(4), 2007.
[13] W. T. Jiang, H. H. Liu, Y. C. Ding, Y. P Tang, Y. S. Shi, L. Yin and B. H. Lu, “Investigation of ink transfer in a roller-reversal imprint process”, Journal of Micromechanics and Microengineering, 015033, 19, 2009.
[14] 王信陽,台灣TFT-LCD關鍵零組件發展與競爭力分析,光連第44期,2003/03.
[15] 楊明仁,LCD背光模組產品介紹,台灣工業銀行,2002/09.
[16] 張明義,背光模組產業概況,產業調查與技術第一四五期
[17] 美商3M公司,http//www.3m.com/
[18] M. G. Kang, M. S. Kim, J. S. Kim, and L. J. Guo,Organic, “Solar cells using nanoimprinted transparent metal electrodes”, Advanced Materials, 4408-4413, 20, 2008.
[19] H. Sirringhaus, N. Tessler, and R. H. Friend, “Conjugated polymers
integrated optoelectronic devices based on conjugated polymers ”, Science, 1741, 280, 1998.
[20] N. Tessler, N. T. Harrison, and R. H. Friend, “High Peak Brightness Polymer Light-Emitting Diodes”, Advanced Materials, 64, 10, 1998.
[21] I. D. Parker, Y. Cao, and C. Y. Yang, “Lifetime and degradation effects in polymer light-emitting diodes”, Journal of Applied Physics, 2441, 85, 1999.
[22] M. Granstrm, K. Petrisch, A. C. Arias, A. Lux, M. R. Andersson, and R. H. Friend, “Laminated fabrication of polymeric photovoltaic diodes”, Nature,257, 395(17), 1998.
[23] J. A. Kreuz, and J. R. Edman, “Polyimide films”, Advanced Materials, 1229, 10(15), 1998.
[24] Z. K. Zhu, J. Yin, F. Cao, X.Y. Shang, and Q. H. Lu, “Photosensitive polyimide/silica hybrids”, Advanced Materials, 1055, 12(14), 2000.
[25] D. C. Duffy, R. J. Jackman, K. M. Vaeth, K. F. Jensen, and G. M. Whitesides, “Electroluminescent materials with feature sizes as small as 5 μm using Elastomeric membranes as masks for dry lift-off”, Advanced Materials, 546, 11(7), 1999.
[26] C. Kim, P. E. Burrows, and S. R. Forrest, “Micropatterning of organic electronic devices by cold-welding”, Science, 831, 288, 2000.
[27] C. Kim , M. Shein, and S. R. Forrest, “Nanolithography based on patterned metal transfer and its application to organic electronic devices”, Applied Physics Letters, 4051, 80(21), 2002.
[28] N. Stutzmann, T. A. Tervoort , D. J. Broer, H. Sirringhaus , R. H. Friend, and P. Smith, “Microcutting materials on polymer substrates”, Advanced Functional Materials, 105, 12(2), 2002.
[29] N. Stutzmann, T. A . Tervoort, C. W. M. Bastiaansen, and P. Smith, “Patterning of polymer-supported metal films by microcutting”, Nature, 613, 407, 2000.
[30] A. Kumar, and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol 'ink' followed by chemical etching”,Applied Physics Letters, 2002, 63(14), 1993.
[31] Y. Xia, and G. M. Whiteside, “Soft Lithography”, Angewandte Chemie International Edition, 550, 37(5), 1998.
[32] Y. Xia, and G. M. Whiteside, “SOFT LITHOGRAPHY”, Annual Review of Materials Research, 153, 28, 1998.
[33] W. R. Childs, and R. G. Nuzzo, “Decal transfer microlithography: a new soft-lithographic patterning method”, Journal of the American Chemical Society, 13583, 124(45), 2002.
[34] M. Wang, H.-G. Braun, T. Kratzmuller, and E. Meyer, “Patterning polymers by micro-fluid-contact printing”, Advanced Materials, 1312, 13(17), 2001
[35] Z. Wang, J. Yuan, J. Zhang, R. Xing, D. Yan, and Y. Han, “Metal transfer printing and its application in organic field-effect transistor fabrication”, Advanced Materials, 1009, 15(12), 2003.
[36] H. Kawata, T. Ueno, M. Yasuda, and Y. Hirai, “New Fine Metal Pattern Fabrication by Transferral Process”, Japanese Journal of Applied Physics, 3854, 42, 2003.
[37] Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Interfacial chemistries for nanoscale transfer printing”, Journal of the American Chemical Society, 7654, 124(26), 2002.
[38] J. W. Kim, K. Y. Yang, S. H. Hong, and H. Lee, “Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method”, Applied Surface Science, 5607, 254(17), 2008.
[39] G. Schmid, M. Levering, and T. Sawitowski, “Nanostructured surfaces of metals and polymers by imprinting with nanoporous alumina”, Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2147-2153, 633(13-14), 2007.
[40] L. J. Heyderman, H. Schift, C. David, J. Gobrecht, T. Schweizer, “Flow behaviour of thin polymer films used for hot embossing lithography”, Microelectronic Engineering, 229-245, 54(3-4), 2000.
[41] Y. Xinhong, W. Zhe, X. Rubo, L. Shifang, H. Yanchun, “Fabrication of structures with tunable morphologies and sizes by soft molding”, Applied Surface Science, 1947-1953, 252, 2005.
[42] Y. Y. Huang, W. X. Zhou, K. J. Hsia, E. Menard, J. U. Park, J. A. Rogers, and A. G. Alleyne, “Stamp Collapse in Soft Lithography”, Langmuir, 8058-8068, 21(17), 2005.
[43] W. Zhou, Y. Huang, E. Menard, N. R. Aluru, J. A. Rogers, and A. G. Alleyne, “Improved Pattern Transfer in Soft Lithography Using Composite Stamps”, Applied Physics Letters, 251925, 87(25), 2005.
[44] T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved Pattern Transfer in Soft Lithography Using Composite Stamps”, Langmuir, 5314-5320, 18(13), 2002.
[45] K. J. Hsia, Y. Huang, E. Menard, J. U. Park, W. Zhou, J. A. Rogers, and J. M. Fulton, “Collapse of stamps for soft lithography due to interfacial adhesion”, Applied Physics Letters, 154106, 86(15), 2005.
[46] M.Y. Nogi, S.C. Iwamoto, A.N. Nakagaito, and H.Y Yano, “Optically transparent nanofiber paper”, Advanced Materials, 1595-1598, 21(16), 2009.